Skip to content

Latest commit

 

History

History
44 lines (29 loc) · 1.61 KB

README.md

File metadata and controls

44 lines (29 loc) · 1.61 KB

Une nouvelle évaluation des capacités multilingues des modèles neuronaux pré-entrainés de la parole

Evaluating pyannote.audio on endangered languages. Exporting segmented Praat TextGrid for linguists.

Introduction

This project aims to evaluate the performance of the pyannote audio diarization toolkit on endangered languages from the Pangloss collection. The goal is to export segmented Praat TextGrids that can be used by linguists for further analysis.

Ces travaux ont été partiellement financés par le projet DIAGNOSTIC soutenu par l’Agence d’Innovation de Défense (contrat no 2022 65 007) et le projet DEEPTYPO soutenu par l’Agence Nationale de la Recherche (ANR-23-CE38-0003-01).

Installation

To clone this repository, run:

git clone https://github.com/rfclara/diarization.git

To install the necessary dependencies, run:

pip install -r requirements.txt

Accept pyannote/segmentation-3.0 user conditions

Accept pyannote/speaker-diarization-3.1 user conditions

Create access token at hf.co/settings/tokens.

Usage

To run the diarization on your audio files, use the following command:

python diarization.py <path_to_wav_file>

You can provide the number of speakers in advance (our experiences showed that this may not improve the results):

python diarization.py <path_to_wav_file> --num_speakers <number_of_speakers>

You will get a .TextGrid (and an .rttm) segmented files, enjoy!