Skip to content

riberaborrell/sde-importance-sampling

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

sde-importance-sampling

This Python repository contains the implementation of importance sampling strategies for metastable diffusion processes. We build a framework to estimate path functionals of stochastic process following an overdamped Langevin equation.

Contains

  • Monte Carlo sampling
  • Adapted metadynamics algorithm for path dependent problems
  • Finite differences solver of the associated HJB equation
  • Importance sampling given a control (null, random, meta, hjb)
  • Related stochastic optimization control (SOC) problem with different control representations (ansatz type and neural networks) and different initializations (null, random, meta, hjb)

Install

  1. clone the repo
git clone git@github.com:riberaborrell/sde_importance_sampling.git
  1. set python version
pyenv local 3.9.7
  1. create virtual environment and install required packages
make venv
  1. activate venv
source venv/bin/activate

Developement

in step 3) also install developement packages

make develop