-
Notifications
You must be signed in to change notification settings - Fork 926
/
demo_release.py
56 lines (45 loc) · 1.71 KB
/
demo_release.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import argparse
import matplotlib.pyplot as plt
from colorizers import *
parser = argparse.ArgumentParser()
parser.add_argument('-i','--img_path', type=str, default='imgs/ansel_adams3.jpg')
parser.add_argument('--use_gpu', action='store_true', help='whether to use GPU')
parser.add_argument('-o','--save_prefix', type=str, default='saved', help='will save into this file with {eccv16.png, siggraph17.png} suffixes')
opt = parser.parse_args()
# load colorizers
colorizer_eccv16 = eccv16(pretrained=True).eval()
colorizer_siggraph17 = siggraph17(pretrained=True).eval()
if(opt.use_gpu):
colorizer_eccv16.cuda()
colorizer_siggraph17.cuda()
# default size to process images is 256x256
# grab L channel in both original ("orig") and resized ("rs") resolutions
img = load_img(opt.img_path)
(tens_l_orig, tens_l_rs) = preprocess_img(img, HW=(256,256))
if(opt.use_gpu):
tens_l_rs = tens_l_rs.cuda()
# colorizer outputs 256x256 ab map
# resize and concatenate to original L channel
img_bw = postprocess_tens(tens_l_orig, torch.cat((0*tens_l_orig,0*tens_l_orig),dim=1))
out_img_eccv16 = postprocess_tens(tens_l_orig, colorizer_eccv16(tens_l_rs).cpu())
out_img_siggraph17 = postprocess_tens(tens_l_orig, colorizer_siggraph17(tens_l_rs).cpu())
plt.imsave('%s_eccv16.png'%opt.save_prefix, out_img_eccv16)
plt.imsave('%s_siggraph17.png'%opt.save_prefix, out_img_siggraph17)
plt.figure(figsize=(12,8))
plt.subplot(2,2,1)
plt.imshow(img)
plt.title('Original')
plt.axis('off')
plt.subplot(2,2,2)
plt.imshow(img_bw)
plt.title('Input')
plt.axis('off')
plt.subplot(2,2,3)
plt.imshow(out_img_eccv16)
plt.title('Output (ECCV 16)')
plt.axis('off')
plt.subplot(2,2,4)
plt.imshow(out_img_siggraph17)
plt.title('Output (SIGGRAPH 17)')
plt.axis('off')
plt.show()