forked from radioML/dataset
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_RML2016.04c.py
executable file
·66 lines (58 loc) · 2.19 KB
/
generate_RML2016.04c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#!/usr/bin/env python
from transmitters import transmitters
from source_alphabet import source_alphabet
import timeseries_slicer
import analyze_stats
from gnuradio import channels, gr, blocks
import numpy as np
import numpy.fft, cPickle, gzip
'''
Generate dataset with dynamic channel model across range of SNRs
'''
apply_channel = True
output = {}
min_length = 9e9
snr_vals = range(-20,20,2)
for snr in snr_vals:
for alphabet_type in transmitters.keys():
print alphabet_type
for i,mod_type in enumerate(transmitters[alphabet_type]):
print "running test", i,mod_type
tx_len = int(10e3)
if mod_type.modname == "QAM64":
tx_len = int(30e3)
if mod_type.modname == "QAM16":
tx_len = int(20e3)
src = source_alphabet(alphabet_type, tx_len, True)
mod = mod_type()
fD = 1
delays = [0.0, 0.9, 1.7]
mags = [1, 0.8, 0.3]
ntaps = 8
noise_amp = 10**(-snr/10.0)
print noise_amp
#noise_amp = 0.1
chan = channels.dynamic_channel_model( 200e3, 0.01, 1e2, 0.01, 1e3, 8, fD, True, 4, delays, mags, ntaps, noise_amp, 0x1337 )
snk = blocks.vector_sink_c()
tb = gr.top_block()
# connect blocks
if apply_channel:
tb.connect(src, mod, chan, snk)
else:
tb.connect(src, mod, snk)
tb.run()
modulated_vector = np.array(snk.data(), dtype=np.complex64)
if len(snk.data()) < min_length:
min_length = len(snk.data())
min_length_mod = mod_type
output[(mod_type.modname, snr)] = modulated_vector
print "min length mod is %s with %i samples" % (min_length_mod, min_length)
# trim the beginning and ends, and make all mods have equal number of samples
start_indx = 100
fin_indx = min_length-100
for mod, snr in output:
output[(mod,snr)] = output[(mod,snr)][start_indx:fin_indx]
X = timeseries_slicer.slice_timeseries_dict(output, 128, 64, 1000)
cPickle.dump( X, file("RML2014.04c_dict.dat", "wb" ) )
X = np.vstack(X.values())
cPickle.dump( X, file("RML2016.04c.dat", "wb" ) )