From 6d54aec625e76a6bf9a2f642610422211ea4d514 Mon Sep 17 00:00:00 2001 From: rifqiharrys Date: Mon, 15 Mar 2021 10:21:25 +0700 Subject: [PATCH] edit readme --- README.md | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/README.md b/README.md index 7f4da67..a04c8ed 100644 --- a/README.md +++ b/README.md @@ -29,8 +29,7 @@ Image below is the workflow of predicting bathymetric depth using SDB GUI if you ![workflow](workflow_sdb_gui.png "Workflow") ## Methods -In order to make depth prediction, there are four methods available. The methods are [K-Nearest Neighbors](https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html#sklearn.neighbors.KNeighborsRegressor), [Multiple Linear Regression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression "MLR Regression"), [Random Forest](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor "RF Regressor") and [Support Vector Machines](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html#sklearn.svm.SVR "SVM Regressor"). - +In order to make depth prediction, there are four methods available. The methods are [K-Nearest Neighbors](https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html#sklearn.neighbors.KNeighborsRegressor), [Multiple Linear Regression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression "MLR Regression"), [Random Forest](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor "RF Regressor") and [Support Vector Machines](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html#sklearn.svm.SVR "SVM Regressor"). All of which are using [Scikit Learn](https://scikit-learn.org) module. ### K-Nearest Neighbors This method implements learning based on k nearest neighbors of each query point. The adjustable hyperparameters for this method are number of neighbors, weights, algorithm, and leaf size. The default values are 3, distance, auto, and 300.