Skip to content

Among those tools to read Excel files in R, which one is the fastest?

Notifications You must be signed in to change notification settings

rifset/finding-fastest-excel-reader-in-r

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Working with Excel files in R: A Journey to Find the Fastest Importer

Disclaimer: this is the iterated version of my old Linkedin post. I changed some codes and parameters in comparison to the old version.

cover2.jpg

Table of Content


Background

In my previous and current projects, I was working with Excel files. One of the tasks was to import an Excel file to another software, as in my case, it was R. At a glance, I know the xlsx package on R, and I thought it would be easy and quick to finish the task. Until I figured out that this simple importing task could be time-consuming. It is done quickly for small-sized data Excel files, yet not for larger ones. This problem led me to the curiosity of what is the fastest R package to import Excel files.

There are a few reasons I could not convert the Excel files to CSV files. One of the reasons is CSV cannot preserve long decimal values while I work decimals most of the time. I realize that importing CSV files is much faster (fread() in the data.table package is the best in my opinion) and less memory-consuming than Excel, but in this case, I need to work with Excels.

Finding available tools

I found five R packages that can be used, such as xlsx, openxlsx, readxl, gdata, and XLConnect. Unfortunately, the XLConnect package could not be loaded on my computer since it builds in an older version than mine, and the gdata package was too complicated to install its Perl component. Thus, the remaining available packages to be benchmarked are xlsx, openxlsx, and readxl.

Benchmarking

There are packages in R to do benchmarking like the microbenchmark package, which evaluates an expression multiple times with a time precision of up to nanoseconds. I decided to do my version of benchmarking because I want to know which package is the fastest to import Excel files on dynamic datasets, instead of evaluating with the same dataset but done many times. So, I created some artificial datasets by randomly subsetting and slicing data from the superai_retail_dataset on Kaggle.

library(data.table)
supermarket <- fread("Supermarket Data.csv", na.strings = c("", "NA"))
dim(supermarket)
str(supermarket)
dim(supermarket)
#> [1] 956574     22

str(supermarket)
#> Classes 'data.table' and 'data.frame':   956574 obs. of  22 variables:
#>  $ SHOP_WEEK               : int  200732 200733 200741 200731 200737 200746 200731 200732 200738 200738 ...
#>  $ SHOP_DATE               : int  20071005 20071010 20071209 20070929 20071110 20080108 20070929 20071004 20071116 20071115 ...
#>  $ SHOP_WEEKDAY            : int  6 4 1 7 7 3 7 5 6 5 ...
#>  $ SHOP_HOUR               : int  17 20 11 17 14 15 18 21 18 15 ...
#>  $ QUANTITY                : int  3 3 1 1 3 1 1 3 3 3 ...
#>  $ SPEND                   : num  6.75 6.75 2.25 2.25 6.75 2.25 2.25 6.75 6.75 6.75 ...
#>  $ PROD_CODE               : chr  "PRD0900001" "PRD0900001" "PRD0900001" "PRD0900001" ...
#>  $ PROD_CODE_10            : chr  "CL00072" "CL00072" "CL00072" "CL00072" ...
#>  $ PROD_CODE_20            : chr  "DEP00021" "DEP00021" "DEP00021" "DEP00021" ...
#>  $ PROD_CODE_30            : chr  "G00007" "G00007" "G00007" "G00007" ...
#>  $ PROD_CODE_40            : chr  "D00002" "D00002" "D00002" "D00002" ...
#>  $ CUST_CODE               : chr  "CUST0000583261" "CUST0000537317" "CUST0000472158" "CUST0000099658" ...
#>  $ CUST_PRICE_SENSITIVITY  : chr  "UM" "MM" "MM" "LA" ...
#>  $ CUST_LIFESTAGE          : chr  "YF" "OF" "YF" "OF" ...
#>  $ BASKET_ID               :integer64 994107800547472 994107900512001 994108700468327 994107700237811 994108300002212 994109200504187 994107700237810 994107800252439 ... 
#>  $ BASKET_SIZE             : chr  "L" "L" "L" "L" ...
#>  $ BASKET_PRICE_SENSITIVITY: chr  "MM" "MM" "MM" "LA" ...
#>  $ BASKET_TYPE             : chr  "Top Up" "Full Shop" "Full Shop" "Full Shop" ...
#>  $ BASKET_DOMINANT_MISSION : chr  "Grocery" "Fresh" "Grocery" "Mixed" ...
#>  $ STORE_CODE              : chr  "STORE00001" "STORE00001" "STORE00001" "STORE00001" ...
#>  $ STORE_FORMAT            : chr  "LS" "LS" "LS" "LS" ...
#>  $ STORE_REGION            : chr  "E02" "E02" "E02" "E02" ...
#>  - attr(*, ".internal.selfref")=<externalptr>

The artificial datasets I wanted to create are combinations of five distinct numbers of rows and four distinct numbers of columns with ten variations of each combined rows-columns parameter.

Data preparation

library(tidyverse)
library(openxlsx)

# Creating artificial data ------------------------------------------------

supermarket_procs <- supermarket %>% 
  left_join(
    supermarket %>% 
      group_by(BASKET_ID) %>% 
      summarize(TOTAL_SPEND_PER_BASKET = sum(SPEND)),
    by = "BASKET_ID"
  ) %>% 
  mutate(PERCENT_SPEND_PER_BASKET = SPEND/TOTAL_SPEND_PER_BASKET) %>% 
  left_join(
    supermarket %>% 
      group_by(PROD_CODE) %>% 
      summarize(across(QUANTITY, list(MEAN = mean, STDEV = sd, MIN = min, MAX = max),
                       .names = "{.fn}_{.col}")),
    by = "PROD_CODE"
  )

# Export artificial data --------------------------------------------------

n.columns <- c(5, 10, 15, 20)
n.rows <- c(100, 500, 1000, 5000, 10000)
set.seed(123)
for (k in 1:4) {
  for (j in 1:5) {
    cwb <- createWorkbook()
    for (i in 1:10) {
      supermarket.tmp <- supermarket_procs %>% 
        select_at(sample(c(1:ncol(supermarket_procs)), n.columns[k])) %>% 
        slice(sample(c(1:nrow(supermarket_procs)), n.rows[j]))
      addWorksheet(cwb, paste0("Sheet", i))
      writeDataTable(cwb, sheet = paste0("Sheet", i), x = supermarket.tmp)
    }
    saveWorkbook(cwb, file = paste0(n.columns[k], "col", n.rows[j], "row", ".xlsx"))
  }
}

Benchmarking process

## Starting from here, please restart the R session

library(data.table)
library(dplyr)

n.columns <- factor(c(5, 10, 15, 20), levels = c(5, 10, 15, 20))
n.rows <- factor(c(100, 500, 1000, 5000, 10000), levels = c(100, 500, 1000, 5000, 10000))

# Benchmarking READXL -----------------------------------------------------

library(readxl)
readxl.dt <- data.table(cols = factor(), rows = factor(), elapsed = numeric())
for (k in 1:4) {
  for (j in 1:5) {
    for (i in 1:10) {
      readxl.dt <- bind_rows(readxl.dt, data.table(
        cols = n.columns[k],
        rows = n.rows[j],
        elapsed = system.time(read_excel(
          paste0(n.columns[k], "col", n.rows[j], "row", ".xlsx"), sheet = i))[3]
      )
      )
    }
  }
}
detach("package:readxl", unload = TRUE)

# Benchmarking OPENXLSX ---------------------------------------------------

library(openxlsx)
openxlsx.dt <- data.table(cols = factor(), rows = factor(), elapsed = numeric())
for (k in 1:4) {
  for (j in 1:5) {
    for (i in 1:10) {
      openxlsx.dt <- bind_rows(openxlsx.dt, data.table(
        cols = n.columns[k],
        rows = n.rows[j],
        elapsed = system.time(read.xlsx(
          paste0(n.columns[k], "col", n.rows[j], "row", ".xlsx"), sheet = i))[3]
      )
      )
    }
  }
}
detach("package:openxlsx", unload = TRUE)

# Benchmarking XLSX -------------------------------------------------------

options(java.parameters = "-Xmx4000m")
library(xlsx)
xlsx.dt <- data.table(cols = factor(), rows = factor(), elapsed = numeric())
for (k in 1:4) {
  for (j in 1:5) {
    for (i in 1:10) {
      xlsx.dt <- bind_rows(xlsx.dt, data.table(
        cols = n.columns[k],
        rows = n.rows[j],
        elapsed = system.time(xlsx::read.xlsx(
          paste0(n.columns[k], "col", n.rows[j], "row", ".xlsx"), sheetIndex = i))[3]
      )
      )
    }
  }
}
detach("package:xlsx", unload = TRUE)

# Wrapping up benchrmarking result ---------------------------------------

all.dt <- list(xlsx = xlsx.dt, openxlsx = openxlsx.dt, readxl = readxl.dt)
all.dt <- rbindlist(all.dt, idcol = "package")

Summarizing

all.dt.summary <- all.dt %>% 
  mutate(package = factor(package, levels = c("xlsx", "openxlsx", "readxl"))) %>% 
  group_by_at(-4) %>% 
  summarize(across(elapsed, list(mean = mean, sd = sd, min = min,
                                 median = median, max = max),
                   .names = "{.fn}.{.col}"), .groups = "keep") %>% 
  ungroup()

Visualization

library(ggplot2)

plot.median <- all.dt.summary %>% 
  ggplot(aes(x = rows, y = median.elapsed, group = package, color = package)) +
  geom_line() +
  geom_point() +
  facet_wrap(~cols, labeller = "label_both") +
  labs(title = "Elapsed Time", x = "Rows", y = "Time (second)",
       color = "Package", subtitle = "Median")

plot.mean <- all.dt.summary %>% 
  ggplot(aes(x = rows, y = mean.elapsed, group = package, color = package)) +
  geom_line() +
  geom_point() +
  facet_wrap(~cols, labeller = "label_both") +
  labs(title = "Elapsed Time", x = "Rows", y = "Time (second)",
       color = "Package", subtitle = "Mean")

Result

Table view

Values shown are elapsed time in second.

Click to see the full table
Package Name # Cols # Rows Mean Std.Dev Min Median Max
xlsx 5 100 0.175 0.1056462 0.09 0.140 0.46
xlsx 5 500 0.442 0.0373571 0.39 0.440 0.52
xlsx 5 1000 0.875 0.0834333 0.71 0.910 0.99
xlsx 5 5000 4.488 0.5512370 3.49 4.610 5.24
xlsx 5 10000 9.138 0.9399858 7.67 9.435 10.39
xlsx 10 100 0.186 0.0107497 0.17 0.190 0.20
xlsx 10 500 0.894 0.1010171 0.74 0.895 1.09
xlsx 10 1000 1.683 0.1141198 1.53 1.660 1.88
xlsx 10 5000 9.125 1.5940044 7.61 8.655 12.91
xlsx 10 10000 21.888 2.1073142 19.02 21.355 25.32
xlsx 15 100 0.269 0.0445845 0.23 0.260 0.39
xlsx 15 500 1.205 0.0782091 1.09 1.205 1.34
xlsx 15 1000 2.358 0.1348909 2.19 2.365 2.53
xlsx 15 5000 13.309 0.6814111 11.93 13.570 14.07
xlsx 15 10000 29.381 1.4177639 27.62 29.485 31.59
xlsx 20 100 0.333 0.0149443 0.31 0.330 0.35
xlsx 20 500 1.496 0.0620394 1.42 1.495 1.61
xlsx 20 1000 2.990 0.0905539 2.86 2.960 3.14
xlsx 20 5000 18.016 1.1070501 16.47 17.795 20.06
xlsx 20 10000 39.458 2.4949095 36.94 38.710 45.80
openxlsx 5 100 0.060 0.0105409 0.05 0.060 0.08
openxlsx 5 500 0.058 0.0078881 0.04 0.060 0.07
openxlsx 5 1000 0.080 0.0066667 0.07 0.080 0.09
openxlsx 5 5000 0.166 0.0142984 0.14 0.170 0.19
openxlsx 5 10000 0.296 0.0164655 0.28 0.290 0.33
openxlsx 10 100 0.056 0.0107497 0.04 0.055 0.08
openxlsx 10 500 0.085 0.0070711 0.08 0.080 0.10
openxlsx 10 1000 0.105 0.0177951 0.09 0.100 0.14
openxlsx 10 5000 0.281 0.0144914 0.26 0.280 0.30
openxlsx 10 10000 0.456 0.0298887 0.42 0.460 0.50
openxlsx 15 100 0.054 0.0126491 0.04 0.050 0.08
openxlsx 15 500 0.082 0.0103280 0.07 0.080 0.10
openxlsx 15 1000 0.118 0.0091894 0.11 0.115 0.13
openxlsx 15 5000 0.372 0.0204396 0.34 0.365 0.41
openxlsx 15 10000 0.736 0.0353396 0.69 0.730 0.82
openxlsx 20 100 0.064 0.0069921 0.06 0.060 0.08
openxlsx 20 500 0.101 0.0099443 0.09 0.105 0.11
openxlsx 20 1000 0.138 0.0091894 0.12 0.140 0.15
openxlsx 20 5000 0.440 0.0149071 0.42 0.440 0.46
openxlsx 20 10000 0.961 0.0762234 0.89 0.925 1.11
readxl 5 100 0.016 0.0051640 0.01 0.020 0.02
readxl 5 500 0.017 0.0067495 0.01 0.020 0.03
readxl 5 1000 0.026 0.0107497 0.01 0.030 0.04
readxl 5 5000 0.039 0.0087560 0.03 0.040 0.05
readxl 5 10000 0.057 0.0115950 0.04 0.055 0.08
readxl 10 100 0.022 0.0063246 0.01 0.020 0.03
readxl 10 500 0.020 0.0081650 0.01 0.020 0.03
readxl 10 1000 0.029 0.0056765 0.02 0.030 0.04
readxl 10 5000 0.058 0.0103280 0.04 0.060 0.08
readxl 10 10000 0.092 0.0122927 0.07 0.090 0.11
readxl 15 100 0.016 0.0051640 0.01 0.020 0.02
readxl 15 500 0.023 0.0067495 0.01 0.020 0.03
readxl 15 1000 0.030 0.0000000 0.03 0.030 0.03
readxl 15 5000 0.087 0.0105935 0.08 0.080 0.11
readxl 15 10000 0.143 0.0067495 0.14 0.140 0.16
readxl 20 100 0.018 0.0078881 0.01 0.020 0.03
readxl 20 500 0.023 0.0082327 0.01 0.025 0.03
readxl 20 1000 0.040 0.0081650 0.03 0.040 0.05
readxl 20 5000 0.101 0.0099443 0.09 0.105 0.11
readxl 20 10000 0.192 0.0193218 0.17 0.190 0.22

Chart view

comparison-plot

As the number of rows and columns increased, the elapsed time rose. The elapsed time of the xlsx package is growing exponentially, while both openxlsx and readxl packages tend to be more stable. After doing some research through the net, the openxlsx is faster because it does not depend on Java while the xlsx package does. Though the elapsed time of openxlsx and readxl is not much different, readxl is faster than openxlsx. Even with the most "complex" Excel file, the readxl package running time is less than 0.2 seconds on average! Wow!

Final thoughts

From this mini research, I learned that the readxl package is the fastest to import Excel files into R. Despite its performance on importing, the package does not provide any export command yet is available on a different but related package called writexl. However, the openxlsx package does provide an export command that makes this package more compact. Finally, it’s up to us to use which package depend on our needs. Thank you for reading this article, see you in the other writing!

Have you opened any Excel files today? :)

Reference

Taemkaeo, C. (2020). superai_retail_dataset, Version 2. Retrieved October 21, 2020 from https://www.kaggle.com/datasets/chinnatiptaemkaeo/superai-retail-dataset.

About

Among those tools to read Excel files in R, which one is the fastest?

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages