-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathjoke2punchline.py
584 lines (434 loc) · 19.2 KB
/
joke2punchline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
from __future__ import unicode_literals, print_function, division
from io import open
import unicodedata
import re
import random
import torch
import torch.nn as nn
from torch import optim
import torch.nn.functional as F
# Use GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#### HELPERS
### Helper class for word indexing
SOS_token = 0 # Start of sentence
EOS_token = 1 # End of sentence
class Lang:
def __init__(self, name):
self.name = name
self.word2index = {}
self.word2count = {}
self.index2word = {0: 'SOS', 1: 'EOS'}
self.n_words = 2 # Initialize w/ SOS and EOS
def add_sentence(self, sentence):
for word in sentence.split(' '):
self.add_word(word)
def add_word(self, word):
if word not in self.word2index:
# Add new word
self.word2index[word] = self.n_words
self.word2count[word] = 1
self.index2word[self.n_words] = word
self.n_words += 1
else:
# Add seen word by increasing its count
self.word2count[word] += 1
### Normalize text
def unicode_to_ascii(s):
# Convert Unicode string to plain ASCII characters
normalized_s = [c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn']
return ''.join(normalized_s)
def normalize_string(s):
# Lowercase, strip whitespace, remove punctuation and non-alphabet characters
s = unicode_to_ascii(s.lower().strip())
s = re.sub(r"([.!?])", r" \1", s)
s = re.sub(r"[^a-zA-Z.!?]+", r" ", s)
return s
### Parse and clean text data
def readLangs(lang1, lang2, reverse=False):
print('Reading lines from file...')
# Read text from file, split into lines
data_file = 'jokes.tsv'
lines = open(data_file, encoding='utf-8').read().strip().split('\n')
# Split lines into pairs, normalize
pairs = [[normalize_string(s) for s in l.split('\t')] for l in lines]
if reverse: # If we're reversing pairs
pairs = [list(reversed(p)) for p in pairs]
input_lang = Lang(lang2)
output_lang = Lang(lang1)
else:
input_lang = Lang(lang1)
output_lang = Lang(lang2)
return input_lang, output_lang, pairs
##### PREPROCESSING
MAX_LENGTH = 40 # Max sentence length, number of words
def pair_filter(p):
"""
Filter for pairs that fall within the MAX_LENGTH and start with our prefixes
Returns True or False
If X to eng/reverse=True -> p[1].startswith
If eng to X/reverse=False -> p[0].startswith
"""
filtered = False
try:
filtered = (len(p[0].split(' ')) < MAX_LENGTH and \
len(p[1].split(' ')) < MAX_LENGTH)
if not p[1]:
print('No punchline: ', p)
except:
print('Error with pair: ', p)
return filtered
def filter_pairs(pairs):
# Apply pair filter
return [pair for pair in pairs if pair_filter(pair)]
### Prepare data
def prepare_data(lang1, lang2, reverse=False):
# Read sentence pairs
input_lang, output_lang, pairs = readLangs(lang1, lang2, reverse)
print('Read %s sentence pairs' % len(pairs))
# Filter pairs
pairs = filter_pairs(pairs)
print('Filtered down to %s sentence pairs' % len(pairs))
# Count words
print('Counting words...')
for pair in pairs:
input_lang.add_sentence(pair[0])
output_lang.add_sentence(pair[1])
print('Counted words:')
print(input_lang.name, input_lang.n_words)
print(output_lang.name, output_lang.n_words)
# print('Joke set of words:')
# print(input_lang.word2index.keys())
# print('Punchline set of words:')
# print(output_lang.word2index.keys())
return input_lang, output_lang, pairs
# Sample pairs
input_lang, output_lang, pairs = prepare_data('jokes', 'punchlines', False)
print(random.choice(pairs))
##### SEQ2SEQ MODEL
class EncoderRNN(nn.Module):
"""
Seq2seq encoder is an RNN.
For each input word, the encoder outputs a vector and a hidden state, and
uses the hidden state for the next input word.
"""
def __init__(self, input_size, hidden_size):
super(EncoderRNN, self).__init__()
self.hidden_size = hidden_size
self.embedding = nn.Embedding(input_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size)
def forward(self, input, hidden):
embedded = self.embedding(input).view(1, 1, -1)
output = embedded
output, hidden = self.gru(output, hidden)
return output, hidden
def init_hidden(self):
return torch.zeros(1, 1, self.hidden_size, device=device)
class DecoderRNN(nn.Module):
"""
Decoder is another RNN that takes in the encoder output vector(s) and
outputs a sequence of words to create the translation.
The most basic seq2seq decoder uses only the last output of the encoder.
This last output is sometimes caled the "context vector", as it encodes
the context of the entire sequence. This context vector is used as the
initial hidden state of the decoder.
At each step of decoding, the decoder is given an input token and hidden
state. The initial input token is the start of string (SOS) token.
The first hidden state is the context vector (the encoder's last hidden
state).
"""
def __init__(self, hidden_size, output_size):
super(DecoderRNN, self).__init__()
self.hidden_size = hidden_size
self.embedding = nn.Embedding(output_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size)
self.out = nn.Linear(hidden_size, output_size)
self.softmax = nn.LogSoftmax(dim=1)
def forward(self, input, hidden):
output = self.embedding(input).view(1, 1, -1)
output = F.relu(output)
output, hidden = self.gru(output, hidden)
output = self.softmax(self.out(output[0]))
return output, hidden
def init_hidden(self):
return torch.zeros(1, 1, self.hidden_size, device=device)
##### ATTENTION
"""
Calculate a set of attention weights.
Multiply attention weights by the encoder output vectors to create a weighted
combination. The result would contain information about that specific part of
the input sequence, and thus help the decoder choose the right output words.
To calculate the attention weights, we'll use a feed-forward layer that uses
the decoder's input and hidden state as inputs.
We will have to choose a max sentence length (input length, for encoder outputs),
wherein sentences of the max length will use all attention weights, while shorter
sentences would only use the first few.
"""
class AttnDecoderRNN(nn.Module):
def __init__(self, hidden_size, output_size, dropout_p=0.1, max_length=MAX_LENGTH):
super(AttnDecoderRNN, self).__init__()
self.hidden_size = hidden_size
self.output_size = output_size
self.dropout_p = dropout_p
self.max_length = max_length
self.embedding = nn.Embedding(self.output_size, self.hidden_size)
self.attention = nn.Linear(self.hidden_size * 2, self.max_length)
self.attention_combine = nn.Linear(self.hidden_size * 2, self.hidden_size)
self.dropout = nn.Dropout(self.dropout_p)
self.gru = nn.GRU(self.hidden_size, self.hidden_size)
self.out = nn.Linear(self.hidden_size, self.output_size)
def forward(self, input, hidden, encoder_outputs):
embedded = self.embedding(input).view(1, 1, -1)
embedded = self.dropout(embedded)
attention_weights = F.softmax(self.attention(torch.cat((embedded[0], hidden[0]), 1)), dim=1)
attention_applied = torch.bmm(attention_weights.unsqueeze(0),
encoder_outputs.unsqueeze(0))
output = torch.cat((embedded[0], attention_applied[0]), 1)
output = self.attention_combine(output).unsqueeze(0)
output = F.relu(output)
output, hidden = self.gru(output, hidden)
output = F.log_softmax(self.out(output[0]), dim=1)
return output, hidden, attention_weights
def init_hidden(self):
return torch.zeros(1, 1, self.hidden_size, device=device)
##### NETWORK PREPROCESSING HELPERS
"""
Prepare training data by converting pairs into input and target tensors.
"""
def indices_from_sentence(lang, sentence):
return [lang.word2index[word] for word in sentence.split(' ')]
def tensor_from_sentence(lang, sentence):
indices = indices_from_sentence(lang, sentence)
indices.append(EOS_token)
sentence_tensor = torch.tensor(indices, dtype=torch.long, device=device).view(-1, 1)
return sentence_tensor
def tensors_from_pair(pair):
input_tensor = tensor_from_sentence(input_lang, pair[0])
target_tensor = tensor_from_sentence(output_lang, pair[1])
return (input_tensor, target_tensor)
##### DISPLAY HELPERS
"""
Helper functions for printing time elapsed and estimated remaining time for
training.
"""
import time
import math
def as_minutes(s):
m = math.floor(s / 60)
s -= m * 60
return '%dm %ds' % (m, s)
def time_since(since, percent):
now = time.time()
s = now - since
es = s / (percent)
rs = es - s
return '%s (- %s)' % (as_minutes(s), as_minutes(rs))
##### MODEL TRAINING
"""
Training:
- Run input sentence through encoder
- Keep track of every output and the last hidden state
- Decoder is given the start of sentence token (SOS) as its first input, and
the last hidden state of the encoder as its first hidden state.
Teacher forcing ratio:
- Teacher forcing uses real target outputs as each next input, rather than
the decoder's guess as the next input. More teacher forcing -> faster
convergence, at the tradeoff of potential instability.
- Ratio means we randomly choose whether or not to use teacher forcing.
"""
teacher_forcing_ratio = 0.5
def train(input_tensor, target_tensor, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion, max_length=MAX_LENGTH):
# Train one interation
encoder_hidden = encoder.init_hidden()
encoder_optimizer.zero_grad()
decoder_optimizer.zero_grad()
input_length = input_tensor.size(0)
target_length = target_tensor.size(0)
encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)
loss = 0
# Encode input
for e_i in range(input_length):
# Include hidden state from the last input when encoding current input
encoder_output, encoder_hidden = encoder(input_tensor[e_i], encoder_hidden)
encoder_outputs[e_i] = encoder_output[0, 0]
# Decoder uses SOS token as first input
decoder_input = torch.tensor([[SOS_token]], device=device)
# Decoder uses last hidden state of encoder as first hidden state
decoder_hidden = encoder_hidden
# Randomly decide whether or not to use teacher forcing for decoder
use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False
if use_teacher_forcing:
# Teacher forcing: Feed the target as the next input
for d_i in range(target_length):
decoder_output, decoder_hidden, decoder_attention = decoder(decoder_input, decoder_hidden, encoder_outputs)
loss += criterion(decoder_output, target_tensor[d_i])
decoder_input = target_tensor[d_i] # Teacher forcing
else:
# No teacher forcing: use decoder's prediction as next input
for d_i in range(target_length):
decoder_output, decoder_hidden, decoder_attention = decoder(decoder_input, decoder_hidden, encoder_outputs)
top_v, top_i = decoder_output.topk(1)
decoder_input = top_i.squeeze().detach() # Detach from history as input
loss += criterion(decoder_output, target_tensor[d_i])
if decoder_input.item() == EOS_token:
break
loss.backward()
encoder_optimizer.step()
decoder_optimizer.step()
return loss.item() / target_length
"""
"""
def train_iters(encoder, decoder, n_iters, print_every=1000, plot_every=100, learning_rate=0.01):
"""
Train the network, track progress:
- Start timer
- Initialize optimizers and criterion
- Create set of training pairs
- Start empty losses array for plotting
- Train many iterations, occasionally print progress and average loss.
"""
start = time.time()
plot_losses = []
print_loss_total = 0 # Reset after each print_every
plot_loss_total = 0 # Reset after each plot_every
encoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate)
decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate)
training_pairs = [tensors_from_pair(random.choice(pairs)) for i in range(n_iters)]
criterion = nn.NLLLoss() # Negative log likelihood loss
for i in range(1, n_iters + 1):
training_pair = training_pairs[i - 1]
input_tensor = training_pair[0]
target_tensor = training_pair[1]
loss = train(input_tensor, target_tensor, encoder, decoder,
encoder_optimizer, decoder_optimizer, criterion)
print_loss_total += loss
plot_loss_total += loss
# Print progress
if i % print_every == 0:
print_loss_avg = print_loss_total / print_every
print_loss_total = 0 # Reset
print('%s (%d %d%%) %.4f' % (time_since(start, i / n_iters),
i, i / n_iters * 100, print_loss_avg))
# Plot progress
if i % plot_every == 0:
plot_loss_avg = plot_loss_total / plot_every
plot_losses.append(plot_loss_avg)
plot_loss_total = 0 # Reset
show_plot(plot_losses)
##### PLOTTING RESULTS
import matplotlib.pyplot as plt
plt.switch_backend('agg')
import matplotlib.ticker as ticker
def show_plot(points):
plt.figure()
fig, ax = plt.subplots()
loc = ticker.MultipleLocator(base=0.2)
ax.yaxis.set_major_locator(loc)
plt.plot(points)
# TODO: savefig
##### EVALUATION
def evaluate(encoder, decoder, sentence, max_length=MAX_LENGTH):
with torch.no_grad():
input_tensor = tensor_from_sentence(input_lang, sentence)
input_length = input_tensor.size()[0]
encoder_hidden = encoder.init_hidden()
encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)
for e_i in range(input_length):
encoder_output, encoder_hidden = encoder(input_tensor[e_i], encoder_hidden)
encoder_outputs[e_i] += encoder_output[0, 0]
# Start of sentence token
decoder_input = torch.tensor([[SOS_token]], device=device)
# Decoder's initial hidden state is encoder's last hidden state
decoder_hidden = encoder_hidden
decoded_words = []
decoder_attentions = torch.zeros(max_length, max_length)
for d_i in range(max_length):
decoder_output, decoder_hidden, decoder_attention = decoder(
decoder_input, decoder_hidden, encoder_outputs)
decoder_attentions[d_i] = decoder_attention.data
top_v, top_i = decoder_output.data.topk(1)
if top_i.item() == EOS_token: # End of sentence
decoded_words.append('<EOS>')
break
else:
# Append prediction
decoded_words.append(output_lang.index2word[top_i.item()])
# Use prediction as input
decoder_input = top_i.squeeze().detach()
return decoded_words, decoder_attentions[:d_i + 1]
def evaluate_randomly(encoder, decoder, n=10):
for i in range(n):
pair = random.choice(pairs)
print('>', pair[0])
print('=', pair[1])
output_words, attentions = evaluate(encoder, decoder, pair[0])
output_sentence = ' '.join(output_words)
print('<', output_sentence)
print()
##### TRAIN AND EVALUATE
hidden_size = 256
# encoder = EncoderRNN(input_lang.n_words, hidden_size).to(device)
# attention_decoder = AttnDecoderRNN(hidden_size, output_lang.n_words, dropout_p=0.1).to(device)
## Load previously trained models
encoder = torch.load('encoder_joke_punchline.pt')
attention_decoder = torch.load('attention_decoder_joke_punchline.pt')
n_iters = 75000
# train_iters(encoder, attention_decoder, n_iters, print_every=5000)
# evaluate_randomly(encoder, attention_decoder)
### Visualizing Attention
test_phrase = 'why did the cookie go to the hospital ?'
output_words, attentions = evaluate(encoder, attention_decoder, test_phrase)
plt.matshow(attentions.numpy())
def show_attention(input_sentence, output_words, attentions):
# TODO savefig
fig = plt.figure()
ax = fig.add_subplot(111)
cax = ax.matshow(attentions.numpy(), cmap='bone')
fig.colorbar(cax)
# Set up axes
ax.set_xticklabels([''] + input_sentence.split(' ') +
['<EOS>'], rotation=90)
ax.set_yticklabels([''] + output_words)
# Show label at every tick
ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
ax.yaxis.set_major_locator(ticker.MultipleLocator(1))
plt.show()
def evaluate_and_show_attention(input_sentence):
output_words, attentions = evaluate(encoder, attention_decoder, input_sentence)
print('input =', input_sentence)
print('output = ', ' '.join(output_words))
print()
# show_attention(input_sentence, output_words, attentions)
# Test cases
evaluate_and_show_attention('why did the chicken cross the road ?')
evaluate_and_show_attention('what do you call an unorganized turkey ?')
evaluate_and_show_attention('what do you call a shortage of shorts ?')
evaluate_and_show_attention('where is the octopus s garden ?')
evaluate_and_show_attention('what do you call an upside down bee ?')
evaluate_and_show_attention('what do you call an upside down egg ?')
evaluate_and_show_attention('what do you call a musical with two penguins ?')
evaluate_and_show_attention('what do you call a scientist with wooden socks ?')
evaluate_and_show_attention('when is a tailor wrong ?')
evaluate_and_show_attention('how much yogurt can the moon eat ?')
evaluate_and_show_attention('what is the difference between the sun and the moon ?')
evaluate_and_show_attention('what is the difference between a garden and a school ?')
evaluate_and_show_attention('what do you call a pile of pillowcases ?')
evaluate_and_show_attention('what do you call a pile of sweaters ?')
evaluate_and_show_attention('what do you call a pile of sugar ?')
evaluate_and_show_attention('what kind of suit does a sun wear ?')
evaluate_and_show_attention('why was the sun unhappy ?')
evaluate_and_show_attention('why was the moon unhappy ?')
evaluate_and_show_attention('what did the skeleton say when they died the wrong year ?')
evaluate_and_show_attention('what is thunder s favorite noise ?')
evaluate_and_show_attention('what is lightning s favorite scientist ?')
evaluate_and_show_attention('how many snails does it take to get to the moon ?')
evaluate_and_show_attention('how many emotions does it take to get to the moon ?')
evaluate_and_show_attention('why was the moon crying ?')
evaluate_and_show_attention('how many emotions does the sun have ?')
evaluate_and_show_attention('where do sheep go to school ?')
evaluate_and_show_attention('why do ghosts haunt the ocean ?')
evaluate_and_show_attention('what do you call the sound with a fever ?')
# Save model
# print('Saving model...')
# torch.save(encoder, 'encoder_joke_punchline.pt')
# torch.save(attention_decoder, 'attention_decoder_joke_punchline.pt')