Skip to content

riscv/sail-riscv

Repository files navigation

RISCV Sail Model

This repository contains a formal specification of the RISC-V architecture, written in Sail. It has been adopted by the RISC-V Foundation.

The model specifies assembly language formats of the instructions, the corresponding encoders and decoders, and the instruction semantics. A reading guide to the model is provided in the doc/ subdirectory, along with a guide on how to extend the model.

Latex or AsciiDoc definitions can be generated from the model that are suitable for inclusion in reference documentation. There is also the newer Sail AsciiDoctor documentation support for RISC-V.

What is Sail?

Sail is a language for describing the instruction-set architecture (ISA) semantics of processors: the architectural specification of the behaviour of machine instructions. Sail is an engineer-friendly language, much like earlier vendor pseudocode, but more precisely defined and with tooling to support a wide range of use-cases.

Given a Sail specification, the tool can type-check it, generate documentation snippets (in LaTeX or AsciiDoc), generate executable emulators, show specification coverage, generate versions of the ISA for relaxed memory model tools, support automated instruction-sequence test generation, generate theorem-prover definitions for interactive proof (in Isabelle, HOL4, and Coq), support proof about binary code (in Islaris), and (in progress) generate a reference ISA model in SystemVerilog that can be used for formal hardware verification.

Sail is being used for multiple ISA descriptions, including essentially complete versions of the sequential behaviour of Arm-A (automatically derived from the authoritative Arm-internal specification, and released under a BSD Clear licence with Arm's permission), RISC-V, CHERI-RISC-V, CHERIoT, MIPS, and CHERI-MIPS; all these are complete enough to boot various operating systems. There are also Sail models for smaller fragments of IBM POWER and x86, including a version of the ACL2 x86 model automatically translated from that.

Getting started

Building the model

Install Sail. On Linux you can download a binary release (strongly recommended), or you can install from source using opam. Then:

$ make

will build the simulator in c_emulator/riscv_sim_RV64.

If you get an error message saying sail: unknown option '--require-version'. it's because your Sail compiler is too old. You need version 0.18 or later.

One can build either the RV32 or the RV64 model by specifying ARCH=RV32 or ARCH=RV64 on the make line, and using the matching target suffix. RV64 is built by default, but the RV32 model can be built using:

$ ARCH=RV32 make

which creates the simulator in c_emulator/riscv_sim_RV32.

The Makefile targets riscv_isa_build, riscv_coq_build, and riscv_hol_build invoke the respective prover to process the definitions and produce the Isabelle model in generated_definitions/isabelle/RV64/Riscv.thy, the Coq model in generated_definitions/coq/RV64/riscv.v, or the HOL4 model in generated_definitions/hol4/RV64/riscvScript.sml respectively. We have tested Isabelle 2018, Coq 8.8.1, and HOL4 Kananaskis-12. When building these targets, please make sure the corresponding prover libraries in the Sail directory ($SAIL_DIR/lib/$prover) are up-to-date and built, e.g. by running make in those directories.

Executing test binaries

The simulator can be used to execute small test binaries.

$ ./c_emulator/riscv_sim_<arch> <elf-file>

A suite of RV32 and RV64 test programs derived from the riscv-tests test-suite is included under test/riscv-tests/. The test-suite can be run using test/run_tests.sh.

Configuring platform options

Information on configuration options for the simulator is available from ./c_emulator/riscv_sim_<arch> -h.

Some useful options are: configuring whether misaligned accesses trap (--enable-misaligned), and whether page-table walks update PTE bits (--enable-dirty-update).

Booting OS images

For booting operating system images, see the information under the os-boot/ subdirectory.

Using development versions of Sail

Rarely, the release version of Sail may not meet your needs. This could happen if you need a bug fix or new feature not yet in the released Sail version, or you are actively working on Sail. In this case you can tell the sail-riscv Makefile to use a local copy of Sail by setting SAIL_DIR to the root of a checkout of the Sail repo when you invoke make. Alternatively, you can use opam pin to install Sail from a local checkout of the Sail repo as described in the Sail installation instructions.

Supported RISC-V ISA features

The Sail specification currently captures the following ISA extensions and features:

  • RV32I and RV64I base ISAs, v2.1
  • Zifencei extension for instruction-fetch fence, v2.0
  • Zicsr extension for CSR instructions, v2.0
  • Zicntr and Zihpm extensions for counters, v2.0
  • Zicond extension for integer conditional operations, v1.0
  • Zicbom and Zicboz extensions for cache-block management (Zicbop not currently supported), v1.0
  • M extension for integer multiplication and division, v2.0
  • Zmmul extension for integer multiplication only, v1.0
  • A extension for atomic instructions, v2.1
  • Zalrsc extension for load-reserved and store-conditional operations, v1.0
  • Zaamo extension for atomic memory operations, v1.0
  • Zabha extension for byte and halfword atomic memory operations, v1.0
  • F and D extensions for single and double-precision floating-point, v2.2
  • Zfh and Zfhmin extensions for half-precision floating-point, v1.0
  • Zfa extension for additional floating-point instructions, v1.0
  • Zfinx, Zdinx, and Zhinx extensions for floating-point in integer registers, v1.0
  • C extension for compressed instructions, v2.0
  • Zca, Zcf, Zcd, and Zcb extensions for code size reduction, v1.0
  • B (Zba, Zbb, Zbs) and Zbc extensions for bit manipulation, v1.0
  • Zbkb, Zbkc, and Zbkx extensions for bit manipulation for cryptography, v1.0
  • Zkn (Zknd, Zkne, Zknh) and Zks (Zksed, Zksh) extensions for scalar cryptography, v1.0.1
  • Zkr extension for entropy source, v1.0
  • V extension for vector operations, v1.0
  • Machine, Supervisor, and User modes
  • Sstc extension for Supervisor-mode Timer Interrupts, v1.0
  • Svinval extension for fine-grained address-translation cache invalidation, v1.0
  • Sv32, Sv39, and Sv48 page-based virtual-memory systems
  • Physical Memory Protection (PMP)

The following features are not currently supported:

  • The Hypervisor Extension.
  • RV32E and RV64E base ISAs
  • Mutable XLEN (UXLEN/SXLEN always equal MXLEN)
  • Big endian
  • Physical Memory Attributes (PMAs)

Example RISC-V instruction specifications

These are verbatim excerpts from the model file containing the base instructions, riscv_insts_base.sail, with a few comments added.

ITYPE (or ADDI)

/* the assembly abstract syntax tree (AST) clause for the ITYPE instructions */

union clause ast = ITYPE : (bits(12), regidx, regidx, iop)

/* the encode/decode mapping between AST elements and 32-bit words */

mapping encdec_iop : iop <-> bits(3) = {
  RISCV_ADDI  <-> 0b000,
  RISCV_SLTI  <-> 0b010,
  RISCV_SLTIU <-> 0b011,
  RISCV_ANDI  <-> 0b111,
  RISCV_ORI   <-> 0b110,
  RISCV_XORI  <-> 0b100
}

mapping clause encdec = ITYPE(imm, rs1, rd, op) <-> imm @ rs1 @ encdec_iop(op) @ rd @ 0b0010011

/* the execution semantics for the ITYPE instructions */

function clause execute (ITYPE (imm, rs1, rd, op)) = {
  let rs1_val = X(rs1);
  let immext : xlenbits = sign_extend(imm);
  let result : xlenbits = match op {
    RISCV_ADDI  => rs1_val + immext,
    RISCV_SLTI  => zero_extend(bool_to_bits(rs1_val <_s immext)),
    RISCV_SLTIU => zero_extend(bool_to_bits(rs1_val <_u immext)),
    RISCV_ANDI  => rs1_val & immext,
    RISCV_ORI   => rs1_val | immext,
    RISCV_XORI  => rs1_val ^ immext
  };
  X(rd) = result;
  RETIRE_SUCCESS
}

/* the assembly/disassembly mapping between AST elements and strings */

mapping itype_mnemonic : iop <-> string = {
  RISCV_ADDI  <-> "addi",
  RISCV_SLTI  <-> "slti",
  RISCV_SLTIU <-> "sltiu",
  RISCV_XORI  <-> "xori",
  RISCV_ORI   <-> "ori",
  RISCV_ANDI  <-> "andi"
}

mapping clause assembly = ITYPE(imm, rs1, rd, op)
                      <-> itype_mnemonic(op) ^ spc() ^ reg_name(rd) ^ sep() ^ reg_name(rs1) ^ sep() ^ hex_bits_signed_12(imm)

SRET

union clause ast = SRET : unit

mapping clause encdec = SRET() <-> 0b0001000 @ 0b00010 @ 0b00000 @ 0b000 @ 0b00000 @ 0b1110011

function clause execute SRET() = {
  let sret_illegal : bool = match cur_privilege {
    User       => true,
    Supervisor => not(extensionEnabled(Ext_S)) | mstatus[TSR] == 0b1,
    Machine    => not(extensionEnabled(Ext_S))
  };
  if   sret_illegal
  then { handle_illegal(); RETIRE_FAIL }
  else if not(ext_check_xret_priv (Supervisor))
  then { ext_fail_xret_priv(); RETIRE_FAIL }
  else {
    set_next_pc(exception_handler(cur_privilege, CTL_SRET(), PC));
    RETIRE_SUCCESS
  }
}

mapping clause assembly = SRET() <-> "sret"

Sequential execution

The model builds a C emulator that can execute RISC-V ELF files, and both emulators provide platform support sufficient to boot Linux, FreeBSD and seL4. The C emulator can be linked against the Spike emulator for execution with per-instruction tandem-verification.

The C emulator, for the Linux boot, currently runs at approximately 300 KIPS on an Intel i7-7700 (when detailed per-instruction tracing is disabled), and there are many opportunities for future optimisation (the Sail MIPS model runs at approximately 1 MIPS). This enables one to boot Linux in about 4 minutes, and FreeBSD in about 2 minutes. Memory usage for the C emulator when booting Linux is approximately 140MB.

The files in the C emulator directory implements ELF loading and the platform devices, defines the physical memory map, and usees command-line options to select implementation-specific ISA choices.

Use for specification coverage measurement in testing

The Sail-generated C emulator can measure specification branch coverage of any executed tests, displaying the results as per-file tables and as html-annotated versions of the model source.

Use as test oracle in tandem verification

For tandem verification of random instruction streams, the tools support the protocols used in TestRIG to directly inject instructions into the C emulator and produce trace information in RVFI format. This has been used for cross testing against spike and the RVBS specification written in Bluespec SystemVerilog.

The C emulator can also be directly linked to Spike, which provides tandem-verification on ELF binaries (including OS boots). This is often useful in debugging OS boot issues in the model when the boot is known working on Spike. It is also useful to detect platform-specific implementation choices in Spike that are not mandated by the ISA specification.

Concurrent execution

The ISA model is integrated with the operational model of the RISC-V relaxed memory model, RVWMO (as described in an appendix of the RISC-V user-level specification), which is one of the reference models used in the development of the RISC-V concurrency architecture; this is part of the RMEM tool. It is also integrated with the RISC-V axiomatic concurrency model as part of the isla-axiomatic tool.

Concurrent testing

As part of the University of Cambridge/ INRIA concurrency architecture work, those groups produced and released a library of approximately 7000 litmus tests. The operational and axiomatic RISC-V concurrency models are in sync for these tests, and they moreover agree with the corresponding ARM architected behaviour for the tests in common.

Those tests have also been run on RISC-V hardware, on a SiFive RISC-V FU540 multicore proto board (Freedom Unleashed), kindly on loan from Imperas. To date, only sequentially consistent behaviour was observed there.

Generating theorem-prover definitions

Sail aims to support the generation of idiomatic theorem prover definitions across multiple tools. At present it supports Isabelle, HOL4 and Coq, and the prover_snapshots directory provides snapshots of the generated theorem prover definitions.

These theorem-prover translations can target multiple monads for different purposes. The first is a state monad with nondeterminism and exceptions, suitable for reasoning in a sequential setting, assuming that effectful expressions are executed without interruptions and with exclusive access to the state.

For reasoning about concurrency, where instructions execute out-of-order, speculatively, and non-atomically, there is a free monad over an effect datatype of memory actions. This monad is also used as part of the aforementioned concurrency support via the RMEM tool.

The files under handwritten_support provide library definitions for Coq, Isabelle and HOL4.

Directory Structure

sail-riscv
- model                   // Sail specification modules
- generated_definitions   // files generated by Sail, in RV32 and RV64 subdirectories
  -  c
  -  lem
  -  isabelle
  -  coq
  -  hol4
  -  latex
- prover_snapshots        // snapshots of generated theorem prover definitions
- handwritten_support     // prover support files
- c_emulator              // supporting platform files for C emulator
- doc                     // documentation, including a reading guide
- test                    // test files
  - riscv-tests           // snapshot of tests from the riscv/riscv-tests github repo
- os-boot                 // information and sample files for booting OS images

Licence

The model is made available under the BSD two-clause licence in LICENCE.

Authors

Originally written by Prashanth Mundkur at SRI International, and further developed by others, especially researchers at the University of Cambridge.

See LICENCE and Git blame for a complete list of authors.

Funding

This software was developed by the above within the Rigorous Engineering of Mainstream Systems (REMS) project, partly funded by EPSRC grant EP/K008528/1, at the Universities of Cambridge and Edinburgh.

This software was developed by SRI International and the University of Cambridge Computer Laboratory (Department of Computer Science and Technology) under DARPA/AFRL contract FA8650-18-C-7809 ("CIFV"), and under DARPA contract HR0011-18-C-0016 ("ECATS") as part of the DARPA SSITH research programme.

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement 789108, ELVER).