-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathdata_utils.py
62 lines (51 loc) · 2.48 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import logging
import torch
from torchvision import transforms, datasets
from torch.utils.data import DataLoader, RandomSampler, DistributedSampler, SequentialSampler
logger = logging.getLogger(__name__)
def get_loader(local_rank, hp):
# if local_rank not in [-1, 0]:
# torch.distributed.barrier()
transform_train = transforms.Compose([
transforms.RandomResizedCrop((hp.data.image_size, hp.data.image_size), scale=(0.05, 1.0)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
transform_test = transforms.Compose([
transforms.Resize((hp.data.image_size, hp.data.image_size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
if hp.data.dataset == "cifar10":
trainset = datasets.CIFAR10(root=hp.data.path,
train=True,
download=True,
transform=transform_train)
testset = datasets.CIFAR10(root=hp.data.path,
train=False,
download=True,
transform=transform_test) if local_rank in [-1, 0] else None
else:
trainset = datasets.CIFAR100(root=hp.data.path,
train=True,
download=True,
transform=transform_train)
testset = datasets.CIFAR100(root=hp.data.path,
train=False,
download=True,
transform=transform_test) if local_rank in [-1, 0] else None
# if local_rank == 0:
# torch.distributed.barrier()
train_sampler = RandomSampler(trainset) if local_rank == 0 else DistributedSampler(trainset)
test_sampler = SequentialSampler(testset)
train_loader = DataLoader(trainset,
sampler=train_sampler,
batch_size=hp.train.batch,
num_workers=4,
pin_memory=True)
test_loader = DataLoader(testset,
sampler=test_sampler,
batch_size=hp.train.valid_batch,
num_workers=4,
pin_memory=True) if testset is not None else None
return train_loader, test_loader