-
-
Notifications
You must be signed in to change notification settings - Fork 61
/
inference.py
61 lines (51 loc) · 2.19 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os
import glob
import tqdm
import torch
import argparse
from scipy.io.wavfile import write
import numpy as np
from model.generator import ModifiedGenerator
from utils.hparams import HParam, load_hparam_str
from denoiser import Denoiser
MAX_WAV_VALUE = 32768.0
def main(args):
checkpoint = torch.load(args.checkpoint_path)
if args.config is not None:
hp = HParam(args.config)
else:
hp = load_hparam_str(checkpoint['hp_str'])
model = ModifiedGenerator(hp.audio.n_mel_channels, hp.model.n_residual_layers,
ratios=hp.model.generator_ratio, mult = hp.model.mult,
out_band = hp.model.out_channels).cuda()
model.load_state_dict(checkpoint['model_g'])
model.eval(inference=True)
with torch.no_grad():
mel = torch.from_numpy(np.load(args.input))
if len(mel.shape) == 2:
mel = mel.unsqueeze(0)
mel = mel.cuda()
audio = model.inference(mel)
audio = audio.squeeze(0) # collapse all dimension except time axis
if args.d:
denoiser = Denoiser(model).cuda()
audio = denoiser(audio, 0.01)
audio = audio.squeeze()
audio = audio[:-(hp.audio.hop_length*10)]
audio = MAX_WAV_VALUE * audio
audio = audio.clamp(min=-MAX_WAV_VALUE, max=MAX_WAV_VALUE-1)
audio = audio.short()
audio = audio.cpu().detach().numpy()
out_path = args.input.replace('.npy', '_reconstructed_epoch%04d.wav' % checkpoint['epoch'])
write(out_path, hp.audio.sampling_rate, audio)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, default=None,
help="yaml file for config. will use hp_str from checkpoint if not given.")
parser.add_argument('-p', '--checkpoint_path', type=str, required=True,
help="path of checkpoint pt file for evaluation")
parser.add_argument('-i', '--input', type=str, required=True,
help="directory of mel-spectrograms to invert into raw audio. ")
parser.add_argument('-d', action='store_true', help="denoising ")
args = parser.parse_args()
main(args)