-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathPreparePredictionData.py
223 lines (162 loc) · 12.3 KB
/
PreparePredictionData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import pandas as pd
import numpy as np
import FetchFPLData as ffd
import ReadFPLData as rfd
import CalculatingFunctions as cf
import MapUnderstatToFPL as muf
import PrepareTrainingData as ptd
import os
pd.options.mode.chained_assignment = None
thisRound = 29
year = 2020
path = './current year/2020-21/'
savePredectionDataTo = './prediction/Gameweeks/'+str(thisRound)+'/next_games/'
os.makedirs(savePredectionDataTo,exist_ok=True)
ffd.GetPlayerData(path)
ffd.GetFixtures(path)
#ffd.GetTeams(path)
players_raw_df = pd.read_csv(path + 'players_raw.csv')
teams_df = pd.read_csv(path + "teams.csv" )
ffd.GetPlayerGameweekData(path + 'players/', players_raw_df)
ffd.GetPlayerHistoricData(path + 'players/', players_raw_df)
for round in range(thisRound,thisRound+4):
players_raw_df = pd.read_csv(path + 'players_raw.csv')
teams_df = pd.read_csv(path + "teams.csv" )
epl_keepCols = ['assists','bonus','bps','clean_sheets','creativity','goals_conceded','goals_scored',\
'ict_index','influence','minutes','red_cards','saves','threat','yellow_cards','total_points']
playerGWHistory_df = rfd.ReadPlayerGameweekHistory(path + 'players/', epl_keepCols)
playerHistory_df = rfd.ReadPlayerHistory(path + 'players/', year, epl_keepCols)
players_raw_df[epl_keepCols] = np.nan
for col in epl_keepCols:
players_raw_df[col] = players_raw_df.id.map(playerGWHistory_df.set_index('element')[col])
for col in epl_keepCols:
players_raw_df[col] = np.where(players_raw_df[col].isna(), players_raw_df.code.map(playerHistory_df.set_index('element_code')[col]), players_raw_df[col])
players_raw_df['player_name'] = players_raw_df['first_name'] + " " + players_raw_df['second_name']
players_raw_df['player_team'] = players_raw_df['team']
players_raw_df = rfd.ReadFixtures(path, round, players_raw_df)
players_raw_df['player_team'] = players_raw_df.player_team.map(teams_df.set_index('id').name)
players_raw_df['opponent_team'] = players_raw_df.opponent_team.map(teams_df.set_index('id').name)
players_raw_df['element'] = players_raw_df['id']
players_raw_df['value'] = players_raw_df['now_cost']
players_raw_df['round'] = np.nan
players_raw_df['round'] = players_raw_df['round'].fillna(round)
players_raw_df['transfers_balance'] = players_raw_df['transfers_in_event'] - players_raw_df['transfers_out_event']
epl_keep_cols = ['element','round','assists','bonus','bps','clean_sheets','value','creativity',\
'total_points','goals_conceded','goals_scored','ict_index','influence','minutes','opponent_team',\
'red_cards','saves','selected_by_percent','threat','transfers_balance','was_home','yellow_cards',\
'player_name','web_name','element_type','player_team']
players_raw_df = players_raw_df[epl_keep_cols]
indexNames = players_raw_df[ players_raw_df['opponent_team'].isna() ].index
players_raw_df.drop(indexNames , inplace=True)
players_raw_df = players_raw_df.groupby(['element_type']).apply(cf.GetNanValues)
understatIDLocation = './prediction/understatID.csv'
understatFile = pd.read_csv(understatIDLocation)
players_raw_df['understat_id'] = players_raw_df.element.map(understatFile.set_index('element').understat_id)
indexNames = players_raw_df[ players_raw_df['understat_id'].isna() ].index
players_raw_df.drop(indexNames , inplace=True)
players_raw_df['understat_id'] = players_raw_df.understat_id.astype(int)
##players_raw_df = players_raw_df.groupby(['player_team']).apply(muf.GetUnderstatID, yr = year)
##players_raw_df = players_raw_df.reset_index(drop=True)
players_raw_df['h_team'] = np.where(players_raw_df['was_home'] == 1, players_raw_df['player_team'], players_raw_df['opponent_team'])
players_raw_df['a_team'] = np.where(players_raw_df['was_home'] == 1, players_raw_df['opponent_team'], players_raw_df['player_team'])
name = 'predictionData'+ str(round-thisRound+1)
players_raw_df.to_csv(savePredectionDataTo + name + '.csv', encoding='utf-8', index = False)
ptd.TrainLastWeekData(thisRound,year,path)
###############################################################################################################################################3
#Uncomment below section only for 1st round of each gameweek calculation
players_raw_df = pd.read_csv(savePredectionDataTo + 'predictionData1.csv')
playerData_df = pd.read_csv('./prediction/Gameweeks/2020 Training Data/round'+str(thisRound-1)+'Training.csv')
playerData_df = playerData_df.drop(columns=['label'])
r2 = playerData_df[playerData_df['round'] == (thisRound-1)].reset_index(drop=True)
cols = playerData_df.columns
prevRoundsData = pd.DataFrame()
for i in range(1,thisRound-1):
playerData_df1 = pd.read_csv('./prediction/Gameweeks/2020 Training Data/round'+str(i)+'Training.csv')
playerData_df1=playerData_df1[cols]
r1 = playerData_df[playerData_df['round'] == i].reset_index(drop=True)
indexNames = playerData_df1[ ~playerData_df1['element'].isin(r1['element'].tolist()) ].index
playerData_df1.drop(indexNames , inplace=True)
indexNames = r1[ r1['element'].isin(playerData_df1['element'].tolist()) ].index
r1.drop(indexNames , inplace=True)
prevRoundsData = pd.concat([prevRoundsData,r1,playerData_df1], ignore_index=True)
playerData_df = pd.concat([prevRoundsData,r2], ignore_index=True)
players_raw_df = pd.concat([players_raw_df, playerData_df], ignore_index=True)
players_raw_df = players_raw_df.groupby(['element']).apply(muf.understatPlayerStats, yr=str(year))
players_raw_df = players_raw_df.reset_index(drop=True)
players_raw_df = players_raw_df.fillna(0)
players_raw_df = players_raw_df.sort_values(["player_name", "round"])
un_cols = ['shots','xG','xA','key_passes','npg','npxG','xGChain','xGBuildup']
players_raw_df = players_raw_df.groupby(['element']).apply(cf.shiftRows, colNames = un_cols)
players_raw_df = players_raw_df.reset_index(drop=True)
players_raw_df = players_raw_df.groupby(['element']).apply(muf.understatPlayerHistoricStats, yr=year, keepCols=un_cols)
players_raw_df = players_raw_df.reset_index(drop=True)
players_raw_df = players_raw_df.groupby(['element']).apply(muf.understatMultipleFixturePlayerStats, cols=un_cols, round=thisRound)
players_raw_df = players_raw_df.reset_index(drop=True)
players_raw_df.to_csv(savePredectionDataTo + 'predictionData1.csv', encoding='utf-8', index = False)
#######################################################################################################################################################
#Uncomment below block for 2-4 for each gw
un_cols = ['shots','xG','xA','key_passes','npg','npxG','xGChain','xGBuildup']
playerData_df = pd.read_csv(savePredectionDataTo + 'predictionData1.csv')
playerData_df = playerData_df[playerData_df['round'] == thisRound].reset_index(drop=True)
playerData_df = pd.pivot_table(playerData_df, values=un_cols, index=['element'], aggfunc=np.mean).reset_index()
for i in range(2,5):
players_raw_df = pd.read_csv(savePredectionDataTo + 'predictionData'+str(i)+'.csv')
players_raw_df[un_cols] = np.nan
for col in un_cols:
players_raw_df[col] = players_raw_df.element.map(playerData_df.set_index('element')[col])
players_raw_df.to_csv(savePredectionDataTo + 'predictionData'+str(i)+'.csv', encoding='utf-8', index = False)
########################################################################################################################################################
#round sent in understat function is just the current one
for i in range(1,5):
players_raw_df = pd.read_csv(savePredectionDataTo + 'predictionData' + str(i) + '.csv')
players_raw_df = players_raw_df.groupby(['player_team']).apply(muf.understatTeamStats, yr=year, group = 'player_team', round = i+thisRound-1)
players_raw_df = players_raw_df.reset_index(drop=True)
players_raw_df = players_raw_df.groupby(['opponent_team']).apply(muf.understatTeamStats, yr=year, group = 'opponent_team', round = i+thisRound-1)
players_raw_df = players_raw_df.reset_index(drop=True)
players_raw_df = players_raw_df.sort_values(["player_name", "round"])
players_raw_df.to_csv(savePredectionDataTo + 'predictionData' + str(i) + '.csv', encoding='utf-8', index = False)
###########################################################################################################################################################
#round sent in understat function is just the current one
for i in range(1,5):
players_raw_df = pd.read_csv(savePredectionDataTo + 'predictionData' + str(i) + '.csv')
players_raw_df = players_raw_df.groupby(['player_team']).apply(muf.understatMultipleFixtureTeamStats, group = 'player_team', round = i+thisRound-1)
players_raw_df = players_raw_df.reset_index(drop=True)
players_raw_df = players_raw_df.groupby(['opponent_team']).apply(muf.understatMultipleFixtureTeamStats, group = 'opponent_team', round = i+thisRound-1)
players_raw_df = players_raw_df.reset_index(drop=True)
players_raw_df = players_raw_df.sort_values(["player_name", "round"])
players_raw_df.to_csv(savePredectionDataTo + 'predictionData' + str(i) + '.csv', encoding='utf-8', index = False)
###########################################################################################################################################################
p1 = pd.read_csv(savePredectionDataTo + 'predictionData1.csv')
p2 = pd.read_csv(savePredectionDataTo + 'predictionData2.csv')
p3 = pd.read_csv(savePredectionDataTo + 'predictionData3.csv')
p4 = pd.read_csv(savePredectionDataTo + 'predictionData4.csv')
players_raw_df = pd.concat([p1,p2,p3,p4])
players_raw_df = players_raw_df.groupby(['player_team']).apply(muf.understatTeamHistoricStats, yr=year, group = 'player_team')
players_raw_df = players_raw_df.reset_index(drop=True)
players_raw_df = players_raw_df.groupby(['opponent_team']).apply(muf.understatTeamHistoricStats, yr=year, group = 'opponent_team')
players_raw_df = players_raw_df.reset_index(drop=True)
players_raw_df = players_raw_df.sort_values(["player_name", "round"])
players_raw_df = players_raw_df.groupby(['element_type']).apply(cf.GetNanValues)
players_raw_df['value'] = players_raw_df.value.astype(float)
players_raw_df['value'] = players_raw_df['value']/10
players_raw_df.to_csv(savePredectionDataTo + 'predictionData.csv', encoding='utf-8', index = False)
####################################################################################################################################################################
players_raw_df = pd.read_csv(savePredectionDataTo + 'predictionData.csv')
avg90 = ['assists', 'bonus', 'bps', 'clean_sheets', 'creativity', 'goals_conceded', 'goals_scored', 'ict_index',\
'influence', 'saves', 'threat', 'shots', 'xG', 'xA', 'key_passes', 'npg', 'npxG', 'xGChain', 'xGBuildup']
avg = ['minutes', 'total_points', 'xG_player_team', 'xGA_player_team', 'npxG_player_team', 'npxGA_player_team', 'deep_player_team', 'deep_allowed_player_team',\
'scored_player_team', 'missed_player_team', 'npxGD_player_team', 'ppda_att_player_team', 'ppda_def_player_team', 'ppda_allowed_att_player_team',\
'ppda_allowed_def_player_team', 'xG_opponent_team', 'xGA_opponent_team', 'npxG_opponent_team', 'npxGA_opponent_team', 'deep_opponent_team',\
'deep_allowed_opponent_team', 'scored_opponent_team', 'missed_opponent_team', 'npxGD_opponent_team', 'ppda_att_opponent_team', 'ppda_def_opponent_team',\
'ppda_allowed_att_opponent_team', 'ppda_allowed_def_opponent_team']
players_raw_df = players_raw_df.groupby(['element']).apply(cf.RunningAverage90, prev = 3, params=avg90)
players_raw_df = players_raw_df.groupby(['element']).apply(cf.RunningAverage90, prev = 5, params=avg90)
players_raw_df = players_raw_df.groupby(['element']).apply(cf.RunningAverage90, prev = 38, params=avg90)
players_raw_df = players_raw_df.groupby(['element']).apply(cf.RunningAverage, prev = 3, params=avg)
players_raw_df = players_raw_df.groupby(['element']).apply(cf.RunningAverage, prev = 5, params=avg)
players_raw_df = players_raw_df.groupby(['element']).apply(cf.RunningAverage, prev = 38, params=avg)
for r in range(1,thisRound):
df = players_raw_df[players_raw_df['round'] == r].reset_index(drop=True)
df.to_csv(savePredectionDataTo + 'round'+str(r)+'Training.csv', encoding='utf-8', index = False)
players_raw_df = players_raw_df[players_raw_df['round'] >=thisRound].reset_index(drop=True)
players_raw_df.to_csv(savePredectionDataTo + 'predictionData.csv', encoding='utf-8', index = False)