Skip to content

Latest commit

 

History

History
99 lines (68 loc) · 3.04 KB

README.rst

File metadata and controls

99 lines (68 loc) · 3.04 KB

derpy

Documentation Status

Financial derivatives and portfolio analysis tools for python

How to get up and running

to include the module in your project, you can simply use pip install derpy then in your python project

import derpy
print(derpy.__version__) # returns '0.0.1'

Example uses

Bonds

from derpy import bond as bd

px = 95.0428
face_val = 100.0
mat = 1.5
cpn_frq = 2
cpn_rate = 5.25
ytm = 5.5

print('    Price: {}'.format(bd.bond_price(face_val, mat, ytm, cpn_rate, cpn_frq)))
print('    Yield: {}'.format(bd.bond_ytm(px, face_val, mat, cpn_rate, cpn_frq)))
print('   ModDur: {}'.format(bd.bond_duration(px, face_val, mat, cpn_rate, cpn_frq)[0]))
print('   MacDur: {}'.format(bd.bond_duration(px, face_val, mat, cpn_rate, cpn_frq)[1]))
print('Convexity: {}'.format(bd.bond_convexity(px, face_val, mat, cpn_rate, cpn_frq)))

Options

from derpy.options import black_scholes_merton as bsm

# usage method 1: use function wrapper
input = ['call', 20, 21, 0.20, 0.1, 0.0002, 0]
call_price = bsm.option_pricing(bsm.euro_option, input)
call_gamma = bsm.option_pricing(bsm.gamma, input)

# usage method 2: call individual functions
put_price = bsm.euro_option('put', 20, 21, 0.2, 0.1, 0.0002) # div_yield is optional
put_gamma = bsm.gamma('put', 20, 21, 0.2, 0.1, 0.0002, 0.0001)

print(call_price)  # return 0.16384395..
print(call_gamma)  # return 0.23993880..
print(put_price)  # return 1.16342..
print(put_gamma)  # return 0.2399107..

Portfolio analysis

from derpy import portfolio as pt

securities = ['AAA', 'BBB']
positions = [[11, 10], [12, 10], [13, 10], [13, 11], [13, 12]]
prices = [[10, 10], [11, 10], [12, 10], [12, 10], [12, 10]]
dates = ['2018-07-01', '2018-08-01', '2018-09-01', '2018-10-01', '2018-11-01']

df_positions = pd.DataFrame(data=positions, columns=securities, index=dates)
df_prices = pd.DataFrame(data=prices, columns=securities, index=dates)

p = pt.Portfolio(names=securities, positions=df_positions, prices=df_prices)

print(p.sec_values())
print(p.sec_weights())
print(p.portfolio_value())
print(p.portfolio_returns())