diff --git a/tests/test_patch3pt.py b/tests/test_patch3pt.py index 2c268ec4..9a6e0e2e 100644 --- a/tests/test_patch3pt.py +++ b/tests/test_patch3pt.py @@ -511,6 +511,20 @@ def test_kkk_jk(): with assert_raises(RuntimeError): kkkp.process(catq, catq, catp) + # Don't check LogSAS for accuracy. Just make sure the code runs. + print('LogSAS') + kkkp2 = treecorr.KKKCorrelation(nbins=3, min_sep=50., max_sep=100., bin_slop=0.2, + min_phi=0.8, max_phi=2.0, nphi_bins=3, + rng=rng, bin_type='LogSAS') + kkkp2.process(catp) + cov = kkkp2.estimate_cov('jackknife', func=lambda c: c.weight.ravel()) + A, w = kkkp2.build_cov_design_matrix('jackknife', func=lambda c: c.weight.ravel()) + vmean = np.mean(A, axis=0) + A -= vmean + cov2 = (catp.npatch-1)/catp.npatch * A.conj().T.dot(A) + np.testing.assert_allclose(cov2, cov) + + @timer def test_ggg_jk(): # Test jackknife and other covariance estimates for ggg correlations. @@ -911,6 +925,19 @@ def test_ggg_jk(): print('max log(ratio) = ',np.max(np.abs(np.log(np.diagonal(cov))-np.log(var_ggg)))) np.testing.assert_allclose(np.log(np.diagonal(cov)), np.log(var_ggg), atol=0.5*tol_factor) + # Don't check LogSAS for accuracy. Just make sure the code runs. + print('LogSAS') + gggp2 = treecorr.GGGCorrelation(nbins=3, min_sep=50., max_sep=100., bin_slop=0.2, + min_phi=0.8, max_phi=2.0, nphi_bins=3, + rng=rng, bin_type='LogSAS') + gggp2.process(catp) + cov = gggp2.estimate_cov('jackknife', func=lambda c: c.weight.ravel()) + A, w = gggp2.build_cov_design_matrix('jackknife', func=lambda c: c.weight.ravel()) + vmean = np.mean(A, axis=0) + A -= vmean + cov2 = (catp.npatch-1)/catp.npatch * A.conj().T.dot(A) + np.testing.assert_allclose(cov2, cov) + @timer def test_nnn_jk(): @@ -1344,6 +1371,18 @@ def test_nnn_jk(): cov5 = ddd5.estimate_cov('jackknife') np.testing.assert_allclose(cov5, cov1) + # Don't check LogSAS for accuracy. Just make sure the code runs. + print('LogSAS') + dddp2 = treecorr.NNNCorrelation(nbins=3, min_sep=50., max_sep=100., bin_slop=0.2, + min_phi=0.8, max_phi=2.0, nphi_bins=3, + rng=rng, bin_type='LogSAS') + dddp2.process(catp) + cov = dddp2.estimate_cov('jackknife', func=lambda c: c.weight.ravel()) + A, w = dddp2.build_cov_design_matrix('jackknife', func=lambda c: c.weight.ravel()) + vmean = np.mean(A, axis=0) + A -= vmean + cov2 = (catp.npatch-1)/catp.npatch * A.conj().T.dot(A) + np.testing.assert_allclose(cov2, cov) @timer def test_brute_jk(): diff --git a/treecorr/util.py b/treecorr/util.py index 5d5540cb..9db77a53 100644 --- a/treecorr/util.py +++ b/treecorr/util.py @@ -70,7 +70,7 @@ def set_omp_threads(num_threads, logger=None): # See comment about this in get_omp_threads. Do it here too. var = "OMP_PROC_BIND" - if var not in os.environ: + if var not in os.environ: # pragma: no cover os.environ[var] = "false" num_threads = _treecorr.SetOMPThreads(num_threads) @@ -100,7 +100,7 @@ def get_omp_threads(): # If this breaks someone valid use of this variable, let us know and we can try to # come up with another solution, but without this lots of multiprocessing breaks. var = "OMP_PROC_BIND" - if var not in os.environ: + if var not in os.environ: # pragma: no cover os.environ[var] = "false" return _treecorr.GetOMPThreads()