forked from rdpeng/RepData_PeerAssessment1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
PA1_template.html
564 lines (474 loc) · 103 KB
/
PA1_template.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<title>Reproducible Research: Peer Assessment 1</title>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: #990073
}
pre .number {
color: #099;
}
pre .comment {
color: #998;
font-style: italic
}
pre .keyword {
color: #900;
font-weight: bold
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: #d14;
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 13px;
}
body {
max-width: 800px;
margin: auto;
padding: 1em;
line-height: 20px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre, img {
max-width: 100%;
}
pre code {
display: block; padding: 0.5em;
}
code {
font-size: 92%;
border: 1px solid #ccc;
}
code[class] {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
</head>
<body>
<h1>Reproducible Research: Peer Assessment 1</h1>
<h2>Loading and preprocessing the data</h2>
<p>Extract the original activity.zip file, to get activity.csv</p>
<pre><code class="r">unzip("activity.zip")
</code></pre>
<p>Load the data</p>
<pre><code class="r">data <- read.csv("activity.csv", na.string="NA", colClasses=c("integer", "Date", "integer"))
</code></pre>
<p>Process/transform the data</p>
<pre><code class="r">data$date <- as.Date(data$date, format = "%Y-%m-%d")
data$interval <- formatC(data$interval, width = 4, format = "d", flag = "0")
datetime <- strptime(paste(data$date,data$interval), "%F %H%M")
data <- cbind(data,datetime)
</code></pre>
<h2>What is mean total number of steps taken per day?</h2>
<p>Histogram of the total number of steps taken each day</p>
<pre><code class="r">data_steps_sum <- with(data, aggregate(list(Sum_Steps = steps), by=list(Date = date), FUN=sum))
plot(data_steps_sum, type = "h", main = "Total Steps Taken Each Day", xlab = "Date", ylab = "Total Steps")
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-4"/> </p>
<p>Mean total number of steps taken per Day</p>
<pre><code class="r">data_steps_mean <- with(data, aggregate(list(Mean_Steps = steps), by=list(Date = date), FUN=mean))
print(data_steps_mean)
</code></pre>
<pre><code>## Date Mean_Steps
## 1 2012-10-01 NA
## 2 2012-10-02 0.4375
## 3 2012-10-03 39.4167
## 4 2012-10-04 42.0694
## 5 2012-10-05 46.1597
## 6 2012-10-06 53.5417
## 7 2012-10-07 38.2465
## 8 2012-10-08 NA
## 9 2012-10-09 44.4826
## 10 2012-10-10 34.3750
## 11 2012-10-11 35.7778
## 12 2012-10-12 60.3542
## 13 2012-10-13 43.1458
## 14 2012-10-14 52.4236
## 15 2012-10-15 35.2049
## 16 2012-10-16 52.3750
## 17 2012-10-17 46.7083
## 18 2012-10-18 34.9167
## 19 2012-10-19 41.0729
## 20 2012-10-20 36.0938
## 21 2012-10-21 30.6285
## 22 2012-10-22 46.7361
## 23 2012-10-23 30.9653
## 24 2012-10-24 29.0104
## 25 2012-10-25 8.6528
## 26 2012-10-26 23.5347
## 27 2012-10-27 35.1354
## 28 2012-10-28 39.7847
## 29 2012-10-29 17.4236
## 30 2012-10-30 34.0938
## 31 2012-10-31 53.5208
## 32 2012-11-01 NA
## 33 2012-11-02 36.8056
## 34 2012-11-03 36.7049
## 35 2012-11-04 NA
## 36 2012-11-05 36.2465
## 37 2012-11-06 28.9375
## 38 2012-11-07 44.7326
## 39 2012-11-08 11.1771
## 40 2012-11-09 NA
## 41 2012-11-10 NA
## 42 2012-11-11 43.7778
## 43 2012-11-12 37.3785
## 44 2012-11-13 25.4722
## 45 2012-11-14 NA
## 46 2012-11-15 0.1424
## 47 2012-11-16 18.8924
## 48 2012-11-17 49.7882
## 49 2012-11-18 52.4653
## 50 2012-11-19 30.6979
## 51 2012-11-20 15.5278
## 52 2012-11-21 44.3993
## 53 2012-11-22 70.9271
## 54 2012-11-23 73.5903
## 55 2012-11-24 50.2708
## 56 2012-11-25 41.0903
## 57 2012-11-26 38.7569
## 58 2012-11-27 47.3819
## 59 2012-11-28 35.3576
## 60 2012-11-29 24.4688
## 61 2012-11-30 NA
</code></pre>
<p>Median total number of steps taken per Day</p>
<pre><code class="r">data_steps_median <- with(data, aggregate(list(Median_Steps = steps), by=list(Date = date), FUN=median, na.rm=TRUE))
print(data_steps_median)
</code></pre>
<pre><code>## Date Median_Steps
## 1 2012-10-01 NA
## 2 2012-10-02 0
## 3 2012-10-03 0
## 4 2012-10-04 0
## 5 2012-10-05 0
## 6 2012-10-06 0
## 7 2012-10-07 0
## 8 2012-10-08 NA
## 9 2012-10-09 0
## 10 2012-10-10 0
## 11 2012-10-11 0
## 12 2012-10-12 0
## 13 2012-10-13 0
## 14 2012-10-14 0
## 15 2012-10-15 0
## 16 2012-10-16 0
## 17 2012-10-17 0
## 18 2012-10-18 0
## 19 2012-10-19 0
## 20 2012-10-20 0
## 21 2012-10-21 0
## 22 2012-10-22 0
## 23 2012-10-23 0
## 24 2012-10-24 0
## 25 2012-10-25 0
## 26 2012-10-26 0
## 27 2012-10-27 0
## 28 2012-10-28 0
## 29 2012-10-29 0
## 30 2012-10-30 0
## 31 2012-10-31 0
## 32 2012-11-01 NA
## 33 2012-11-02 0
## 34 2012-11-03 0
## 35 2012-11-04 NA
## 36 2012-11-05 0
## 37 2012-11-06 0
## 38 2012-11-07 0
## 39 2012-11-08 0
## 40 2012-11-09 NA
## 41 2012-11-10 NA
## 42 2012-11-11 0
## 43 2012-11-12 0
## 44 2012-11-13 0
## 45 2012-11-14 NA
## 46 2012-11-15 0
## 47 2012-11-16 0
## 48 2012-11-17 0
## 49 2012-11-18 0
## 50 2012-11-19 0
## 51 2012-11-20 0
## 52 2012-11-21 0
## 53 2012-11-22 0
## 54 2012-11-23 0
## 55 2012-11-24 0
## 56 2012-11-25 0
## 57 2012-11-26 0
## 58 2012-11-27 0
## 59 2012-11-28 0
## 60 2012-11-29 0
## 61 2012-11-30 NA
</code></pre>
<h2>What is the average daily activity pattern?</h2>
<p>Time series plot of the 5-minute interval and the average number of steps taken, averaged across all days</p>
<pre><code class="r">data_interval_mean <- with(data, aggregate(list(Mean_Steps = steps), by=list(Interval = interval), FUN=mean, na.rm=TRUE))
data_interval_mean_plot <- with(data_interval_mean, plot(Interval, Mean_Steps, type="l"))
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-7"/> </p>
<p>Which 5-minute interval, on average across all the days in the dataset, contains the maximum number of steps?</p>
<pre><code class="r">data[order(data_interval_mean$Mean_Steps, decreasing=TRUE)[1],]$interval
</code></pre>
<pre><code>## [1] "0835"
</code></pre>
<h2>Imputing missing values</h2>
<p>Total number of missing values in the dataset</p>
<pre><code class="r">missing_steps = matrix(is.na(data$steps))
missing_steps_count = sum(missing_steps)
</code></pre>
<p>New dataset that is equal to the original dataset but with the missing data filled in</p>
<pre><code class="r">new_data = data
new_data[missing_steps,]$steps = data_interval_mean$Mean_Steps
</code></pre>
<p>Histogram of the total number of steps taken each day</p>
<pre><code class="r">new_data_steps_sum <- with(new_data, aggregate(list(Sum_Steps = steps), by=list(Date = date), FUN=sum))
plot(new_data_steps_sum, type = "h", main = "Total Steps Taken Each Day - after missing values were imputed", xlab = "Date", ylab = "Total Steps")
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-11"/> </p>
<p>New mean total number of steps taken per Day</p>
<pre><code class="r">new_data_steps_mean <- with(new_data, aggregate(list(Mean_Steps = steps), by=list(Date = date), FUN=mean, na.rm=TRUE))
print(new_data_steps_mean)
</code></pre>
<pre><code>## Date Mean_Steps
## 1 2012-10-01 37.3826
## 2 2012-10-02 0.4375
## 3 2012-10-03 39.4167
## 4 2012-10-04 42.0694
## 5 2012-10-05 46.1597
## 6 2012-10-06 53.5417
## 7 2012-10-07 38.2465
## 8 2012-10-08 37.3826
## 9 2012-10-09 44.4826
## 10 2012-10-10 34.3750
## 11 2012-10-11 35.7778
## 12 2012-10-12 60.3542
## 13 2012-10-13 43.1458
## 14 2012-10-14 52.4236
## 15 2012-10-15 35.2049
## 16 2012-10-16 52.3750
## 17 2012-10-17 46.7083
## 18 2012-10-18 34.9167
## 19 2012-10-19 41.0729
## 20 2012-10-20 36.0938
## 21 2012-10-21 30.6285
## 22 2012-10-22 46.7361
## 23 2012-10-23 30.9653
## 24 2012-10-24 29.0104
## 25 2012-10-25 8.6528
## 26 2012-10-26 23.5347
## 27 2012-10-27 35.1354
## 28 2012-10-28 39.7847
## 29 2012-10-29 17.4236
## 30 2012-10-30 34.0938
## 31 2012-10-31 53.5208
## 32 2012-11-01 37.3826
## 33 2012-11-02 36.8056
## 34 2012-11-03 36.7049
## 35 2012-11-04 37.3826
## 36 2012-11-05 36.2465
## 37 2012-11-06 28.9375
## 38 2012-11-07 44.7326
## 39 2012-11-08 11.1771
## 40 2012-11-09 37.3826
## 41 2012-11-10 37.3826
## 42 2012-11-11 43.7778
## 43 2012-11-12 37.3785
## 44 2012-11-13 25.4722
## 45 2012-11-14 37.3826
## 46 2012-11-15 0.1424
## 47 2012-11-16 18.8924
## 48 2012-11-17 49.7882
## 49 2012-11-18 52.4653
## 50 2012-11-19 30.6979
## 51 2012-11-20 15.5278
## 52 2012-11-21 44.3993
## 53 2012-11-22 70.9271
## 54 2012-11-23 73.5903
## 55 2012-11-24 50.2708
## 56 2012-11-25 41.0903
## 57 2012-11-26 38.7569
## 58 2012-11-27 47.3819
## 59 2012-11-28 35.3576
## 60 2012-11-29 24.4688
## 61 2012-11-30 37.3826
</code></pre>
<p>New median total number of steps taken per Day</p>
<pre><code class="r">new_data_steps_median <- with(new_data, aggregate(list(Median_Steps = steps), by=list(Date = date), FUN=median, na.rm=TRUE))
print(new_data_steps_median)
</code></pre>
<pre><code>## Date Median_Steps
## 1 2012-10-01 34.11
## 2 2012-10-02 0.00
## 3 2012-10-03 0.00
## 4 2012-10-04 0.00
## 5 2012-10-05 0.00
## 6 2012-10-06 0.00
## 7 2012-10-07 0.00
## 8 2012-10-08 34.11
## 9 2012-10-09 0.00
## 10 2012-10-10 0.00
## 11 2012-10-11 0.00
## 12 2012-10-12 0.00
## 13 2012-10-13 0.00
## 14 2012-10-14 0.00
## 15 2012-10-15 0.00
## 16 2012-10-16 0.00
## 17 2012-10-17 0.00
## 18 2012-10-18 0.00
## 19 2012-10-19 0.00
## 20 2012-10-20 0.00
## 21 2012-10-21 0.00
## 22 2012-10-22 0.00
## 23 2012-10-23 0.00
## 24 2012-10-24 0.00
## 25 2012-10-25 0.00
## 26 2012-10-26 0.00
## 27 2012-10-27 0.00
## 28 2012-10-28 0.00
## 29 2012-10-29 0.00
## 30 2012-10-30 0.00
## 31 2012-10-31 0.00
## 32 2012-11-01 34.11
## 33 2012-11-02 0.00
## 34 2012-11-03 0.00
## 35 2012-11-04 34.11
## 36 2012-11-05 0.00
## 37 2012-11-06 0.00
## 38 2012-11-07 0.00
## 39 2012-11-08 0.00
## 40 2012-11-09 34.11
## 41 2012-11-10 34.11
## 42 2012-11-11 0.00
## 43 2012-11-12 0.00
## 44 2012-11-13 0.00
## 45 2012-11-14 34.11
## 46 2012-11-15 0.00
## 47 2012-11-16 0.00
## 48 2012-11-17 0.00
## 49 2012-11-18 0.00
## 50 2012-11-19 0.00
## 51 2012-11-20 0.00
## 52 2012-11-21 0.00
## 53 2012-11-22 0.00
## 54 2012-11-23 0.00
## 55 2012-11-24 0.00
## 56 2012-11-25 0.00
## 57 2012-11-26 0.00
## 58 2012-11-27 0.00
## 59 2012-11-28 0.00
## 60 2012-11-29 0.00
## 61 2012-11-30 34.11
</code></pre>
<h2>Are there differences in activity patterns between weekdays and weekends?</h2>
<p>New factor variable in the dataset with two levels – “weekday” and “weekend” indicating whether a given date is a weekday or weekend day</p>
<pre><code class="r">day_type <- factor(weekdays(new_data$date) %in% c("Saturday", "Sunday"), labels = c("weekday", "weekend"))
new_data = cbind(new_data, day_type)
</code></pre>
<p>Panel plot containing a time series plot (i.e. type = “l”) of the 5-minute interval (x-axis) and the average number of steps taken, averaged across all weekday days or weekend days (y-axis)</p>
<pre><code class="r">new_data_interval_mean_weekday <- with(new_data[new_data$day_type=="weekday",], aggregate(list(Mean_Steps = steps), by=list(Interval = interval), FUN=mean, na.rm=TRUE))
new_data_interval_mean_weekend <- with(new_data[new_data$day_type=="weekend",], aggregate(list(Mean_Steps = steps), by=list(Interval = interval), FUN=mean, na.rm=TRUE))
plot(new_data_interval_mean_weekday, type="l", col="red")
lines(new_data_interval_mean_weekend, col="green")
legend(x = 235, legend="red - weekday, green - weekend")
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-15"/> </p>
</body>
</html>