forked from dsullivan7/LogPrediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
192 lines (145 loc) · 5.12 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import numpy as np
import pandas as p
import pickle
import os
import time
import json
from matplotlib import pyplot as plt
from sklearn.cluster import Birch
from sklearn.preprocessing import StandardScaler
from matplotlib import pyplot as plt
from sklearn.linear_model import SGDClassifier
try:
input = raw_input
except NameError:
pass
memory_threshold = .98
number_per_hour = 100
user_cols = [-2, 3, 5, 6, 7]
system_cols = [-2, 1, 2, 3]
def transform_t(arr, col):
for entry in arr:
sp = entry[col].split(":")
sec = (int(sp[0]) * 3600 + int(sp[1]) * 60 + int(sp[2])) / 3600
entry[col] = sec
def get_Xy(path, mem_thresh, num_prob):
user_arr = np.array(p.read_csv(os.path.join(path, "dump_user.csv"),
index_col=None, header=None))
system_arr = np.array(p.read_csv(os.path.join(path, "dump_system.csv"),
index_col=None, header=None))
user_arr = user_arr[:, user_cols]
system_arr = system_arr[:, system_cols]
transform_t(user_arr, 0)
transform_t(system_arr, 0)
mem_perc = system_arr[:, 2] / (system_arr[:, 2] + system_arr[:, 3])
system_times = system_arr[:, 0].astype(np.int)
user_times = user_arr[:, 0].astype(np.int)
trouble_times = np.unique(system_times[mem_perc > mem_thresh])
indexes = np.arange(user_arr.shape[0])
y = np.zeros(user_arr.shape[0])
for t in trouble_times:
trouble_users = user_arr[user_times == t]
trouble_indexes = indexes[user_times == t]
mx = np.argsort(trouble_users[:, 3])[-num_prob:]
y[trouble_indexes[mx]] = 1
X = user_arr[:, 1:].astype(np.float64)
return X, y
def process_single(message):
arr = np.array(message.split(","))
arr = arr[user_cols]
return arr[1:].astype(np.float64)
def process():
X_train = []
y_train = np.array([])
for root, direcs, fi in os.walk("data"):
for direc in direcs:
print(direc)
X_tmp, y_tmp = get_Xy(os.path.join(root, direc),
memory_threshold, number_per_hour)
X_train.append(X_tmp)
y_train = np.append(y_train, y_tmp)
X_train = np.vstack(X_train)
return X_train, y_train
def fit():
X_train, y_train = process()
ss = StandardScaler()
X_train = ss.fit_transform(X_train.astype(np.float64))
clf = SGDClassifier(n_iter=500, average=True, loss="log")
clf.fit(X_train, y_train)
pickle.dump(clf, open("classifier.p", "wb"))
pickle.dump(ss, open("scaler.p", "wb"))
# use to predict full file
def full_predict():
clf = pickle.load(open("classifier.p", "rb"))
ss = pickle.load(open("scaler.p", "rb"))
# use this code to predict full set
X, y = get_Xy("data/2014-07-21/",
memory_threshold, number_per_hour)
X = ss.fit_transform(X)
print("score: %.8f" % clf.score(X, y))
def graph_performance():
num_values = 20
X_train, y_train = process()
increment = X_train.shape[0] / num_values
clf = SGDClassifier(n_iter=10, average=True, loss="log")
times = []
num_samples = []
for i in range(1, num_values):
print("training %d" % i)
num_samples.append(i * increment)
X_slice = X_train[:i * increment]
y_slice = y_train[:i * increment]
st = time.time()
clf.fit(X_slice, y_slice)
end = time.time()
times.append(end - st)
plt.close("all")
plt.plot(num_samples, times, label='Online ASGD')
plt.ylabel("training time (seconds)")
plt.xlabel("number of log entries")
plt.title('Learning computation time')
plt.legend(loc='upper left')
plt.show()
def loop():
clf = pickle.load(open("classifier.p", "rb"))
ss = pickle.load(open("scaler.p", "rb"))
while True:
log_message = input('Enter a user log message (type exit to exit):\n')
if log_message == "exit":
print("Thanks for trying this demo out!")
break
else:
print("")
try:
entry = process_single(log_message)
entry = ss.transform(entry)
pred = clf.predict_proba(entry)
print("The probability that this is a dangerous user is %0.8f"
% pred[0, 1])
except:
print("doesn't look like the message "
"was in the correct format")
print("")
def to_json():
clf = pickle.load(open("classifier.p", "rb"))
ss = pickle.load(open("scaler.p", "rb"))
obj = {}
obj["weights"] = clf.coef_.tolist()[0]
obj["intercept"] = clf.intercept_.tolist()[0]
obj["scale"] = {}
obj["scale"]["mean"] = ss.mean_.tolist()
obj["scale"]["std"] = ss.std_.tolist()
f = open("web/public/js/data/model.js", "w")
f.write("var slapos_model = " + json.dumps(obj))
if __name__ == "__main__":
# comment this out after computing so you don't have to keep processing and
# fitting
# fit()
# uncoment to score a full log file
# full_predict()
# try the demo loop
loop()
# graph time performance
# graph_performance()
# write to json
# to_json()