Skip to content

Image segmentation and point classification using UAV survey images of a California volcano

License

Notifications You must be signed in to change notification settings

rmsare/cs231a-project

Repository files navigation

cs231a-project

Code for simple segmentation/classification of UAV images and photogrammetric point clouds. Main functionality:

  • Preprocessing: segment images and extract various features
  • Label training or validation images
  • Predict pixel labels by SVM or k-means
  • Project pixel labels onto a point cloud aligned with survey images
  • Estimate ground plane orientation of the scene using a subset of classified points

Applied to survey images over an active volcano to identify ground, vegetation and shadow points for CS231A project (Stanford Spring 2017).

Requires skimage, sklearn, numpy, matplotlib, and (optionally) commerical PhotoScan API for photogrammetry.

Contact me (robertmsare@gmail.com) with any questions, bugs, or suggestions.

Changelog

Date Description
10 June 2017 Improve commenting, README for submission
9 June 2017 Functionality complete for final submission
9 June 2017 Add RANSAC estimation from private repo
8 June 2017 Update from private repository

TODO

  • More training data
  • Conditional random field or DL
  • Extend to survey areas with more dense vegetation
  • Apply to survey data from August 2017

About

Image segmentation and point classification using UAV survey images of a California volcano

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages