-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
432 lines (354 loc) · 15.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
import glob
import os
import random
import re
import time
from datetime import datetime
import math
import librosa
import numpy as np
from pydub import AudioSegment, silence
from collections import defaultdict
from difflib import SequenceMatcher
import argparse
import perlin
def unique_file(filename):
counter = 1
file_name_parts = os.path.splitext(filename)
while os.path.isfile(filename):
filename = file_name_parts[0] + '_' + str(counter) + file_name_parts[1]
counter += 1
return filename
def get_filename_no_ext_no_numbers(file):
filename = os.path.basename(file)
filename_no_extension = os.path.splitext(filename)[0]
filename_no_numbers = ''.join(
[i for i in filename_no_extension if not i.isdigit()])
return filename_no_numbers
class FingerPrinter():
def __init__(self):
self.analysis_files = [
os.path.splitext(os.path.basename(file))[0]
for file in glob.glob("analysis files/*.json")
]
def join_parts(self, seed, timestamp):
part_files = glob.glob("output/{0}-{1}-*".format(seed, timestamp))
part_files.sort(key=lambda f: [int(x) if x.isdigit() else x for x in re.findall(r'[^0-9]|[0-9]+', f)])
# if "P1" not in part_files[0]:
# print("No parts detected.")
# return
all_parts = AudioSegment.empty()
for part_file in part_files:
all_parts += AudioSegment.from_file(part_file)
all_parts.export(
open("output/{0}-{1}.wav".format(seed, timestamp), "wb"),
format="wav")
for part_file in part_files:
os.remove(part_file)
def run(self,
source_paths,
seed=0,
exclude_paths=[],
exclude_files=[],
max_output_length=-1,
big_chunk_interval=[1, 10, 5],
big_chunk_length=[500, 5000],
noise_rate_1=1,
noise_rate_2=1,
noise_rate_3=1,
chunk_duration_range=[5, 300],
chunk_overlap_range=[0.4, 0.95],
chunk_skip_range=[300, 5000],
remove_duplicates=True,
split_interval=5 * 60,
file_start_index=0,
output_mels=False,
correct_mod_dates=True,
remove_silence=False,
max_num_files=-1,
time_scale=1):
random.seed(seed)
noise_offset = random.uniform(0, 10000000)
noise = perlin.PerlinNoiseFactory(1, octaves=3, unbias=True)
audio_files = []
for path in source_paths:
audio_files += glob.glob(path + "/**/*", recursive=True)
if max_num_files > 0:
audio_files = audio_files[:max_num_files]
filtered_files = []
for file in audio_files:
if file.endswith(".mp3") or file.endswith(".wav"):
valid = True
for exclude_path in exclude_paths:
if exclude_path in file:
valid = False
for exclude_file in exclude_files:
if file.endswith(exclude_file):
valid = False
if valid:
filtered_files.append(file)
audio_files = filtered_files
# get corrected modified dates from other file
if correct_mod_dates:
corrected_modified_dates = dict()
for file in audio_files:
files_with_same_name = glob.glob(
os.path.splitext(file)[0] + ".*")
if len(files_with_same_name) > 1:
files_with_same_name.sort(
key=lambda f: os.path.getmtime(f))
corrected_modified_dates[file] = os.path.getmtime(
files_with_same_name[0])
# sort by date modified
def get_date_modified(file):
return corrected_modified_dates[
file] if file in corrected_modified_dates else os.path.getmtime(
file)
# correct the timestamps of this folder
fs = list(
filter(
lambda f: "/Volumes/Shared/Projects/Music/Image-Line/Data/Projects/Oldies" in f,
audio_files))
for file in fs:
date = datetime.fromtimestamp(get_date_modified(file))
if date.day == 21 and date.month == 10 and date.year == 2008:
date = date.replace(year=2004)
corrected_modified_dates[file] = date.timestamp()
audio_files.sort(key=get_date_modified)
# remove duplicates
if remove_duplicates:
deduped_list = []
filenames = []
for file in audio_files:
name = os.path.splitext(os.path.basename(file))[0]
if name not in filenames:
filenames.append(name)
deduped_list.append(file)
audio_files = deduped_list
def file_interestingness(index):
if index >= len(audio_files) or index == 0:
return 1
else:
filename = get_filename_no_ext_no_numbers(audio_files[index])
prev_filename = get_filename_no_ext_no_numbers(
audio_files[index - 1])
return 1 - SequenceMatcher(None, prev_filename,
filename).ratio()
part_number = 1
timestamp = int(time.time())
output_metadata_files_path = "output/{0}-{1}.files.txt".format(
seed, timestamp)
output_metadata_times_path = "output/{0}-{1}.times.txt".format(
seed, timestamp)
metadata_files_file = open(output_metadata_files_path, "w")
metadata_times_file = open(output_metadata_times_path, "w")
num_files_scanned = 1
fingerprint = AudioSegment.empty()
total_duration = 0
all_mels = None
prev_filename = None
low_interestingness_time = 0
for i in range(file_start_index, len(audio_files)):
file = audio_files[i]
filename = os.path.basename(file)
filename_no_extension = os.path.splitext(filename)[0]
try:
# open the audio files
audio_file = AudioSegment.from_file(file)
# remove silence
if remove_silence:
non_silent_parts = silence.split_on_silence(
audio_file, 1000, silence_thresh=-40)
non_silent = AudioSegment.empty()
for part in non_silent_parts:
non_silent += part
audio_file = non_silent
file_duration = audio_file.duration_seconds * 1000
# skip super short files
if file_duration < 10:
continue
# calculate interestingness
interestingness = file_interestingness(i)
if interestingness == 0:
low_interestingness_time += 1
if low_interestingness_time > 10:
interestingness = 1
low_interestingness_time = 0
if file_interestingness(i + 1) > 0:
interestingness = 1
# save metadata
metadata_files_file.write("{0}~{1}\n".format(
get_date_modified(file), filename.replace("~", " ")))
metadata_times_file.write("{0}\n".format(
round(total_duration, 2)))
chunk_start_time = None
chunk_skip_rate = random.uniform(
chunk_skip_range[0], chunk_skip_range[1]) * time_scale
chunk_start_time = 0
file_mels = None
num_big_chunks = 0
if file_duration > 30000 and file_duration < 240000:
num_big_chunks = 1
else:
num_big_chunks = math.floor(file_duration / 120000)
if num_big_chunks > 5:
num_big_chunks = 5
if interestingness == 0:
num_big_chunks = 0
big_chunk_interval = file_duration / (num_big_chunks + 1)
next_bigchunk = big_chunk_interval + random.uniform(
-10000, 10000)
while True:
noise_env_1 = noise(total_duration * noise_rate_1 +
noise_offset) * 0.5 + 0.5
noise_env_2 = noise(total_duration * noise_rate_2 + 1000 +
noise_offset) * 0.5 + 0.5
noise_env_3 = noise(total_duration * noise_rate_3 + 2000 +
noise_offset) * 0.5 + 0.5
chunk_duration = (noise_env_1 * (chunk_duration_range[1] - chunk_duration_range[0]) + \
chunk_duration_range[0]) * time_scale
chunk_overlap_ratio = (noise_env_2 * (chunk_overlap_range[1] - chunk_overlap_range[0]) + \
chunk_overlap_range[0])
big_chunk = False
# big chunks are longer snippets taken from the track
if file_duration > 10000 and chunk_start_time > next_bigchunk and num_big_chunks > 0:
chunk_duration = random.uniform(
big_chunk_length[0],
big_chunk_length[1]) * time_scale
next_bigchunk += big_chunk_interval + random.uniform(
-10000, 10000)
num_big_chunks -= 1
big_chunk = True
print("Big chunk!")
else:
big_chunk = False
chunk_duration = min(file_duration,
chunk_duration) * time_scale
chunk_duration_half = int(chunk_duration / 2)
chunk_end_time = chunk_start_time + chunk_duration
# if it's reached the end go to the next file
if chunk_end_time > file_duration:
break
chunk = audio_file[chunk_start_time:chunk_end_time]
chunk_start_time += chunk_skip_rate
# if the chunk is silent skip it
if chunk.dBFS == -float("infinity"):
print("Silent chunk skipped.")
break
# analyse
if output_mels:
data = np.array(list(chunk.get_array_of_samples()))
mels = librosa.feature.melspectrogram(
y=data, sr=44100, n_mels=100, power=1)
mels = np.mean(mels, axis=1)
if not file_mels:
file_mels = np.reshape(mels, (100, 1))
else:
file_mels = np.vstack([file_mels, mels])
# fade the ends of the chunk
fade_time = chunk_duration_half
if big_chunk:
fade_time = min(chunk_duration_half, 400)
chunk_overlap_ratio = 0.2
chunk = chunk.fade_in(fade_time).fade_out(fade_time)
# attenuate chunk
chunk = chunk.apply_gain(-12 if not big_chunk else -6)
prev_len = fingerprint.duration_seconds
if fingerprint.duration_seconds == 0:
fingerprint = chunk
else:
# add the silence to the end of the fingerprint to make room for the new chunk
fingerprint = fingerprint + AudioSegment.silent(
duration=chunk_duration *
(1 - chunk_overlap_ratio))
curr_position = fingerprint.duration_seconds * 1000 - chunk_duration
# overlap the chunk with the fingerprint
fingerprint = fingerprint.overlay(
chunk, position=curr_position)
total_duration += fingerprint.duration_seconds - prev_len
print(file, ":", i + 1, "of", len(audio_files))
print("Length: {0:.3f} mins".format(total_duration / 60))
# split and clear at regular intervals
if fingerprint.duration_seconds > split_interval + 10:
source_paths = "output/{0}-{1}-P{2}.wav".format(
seed, timestamp, part_number)
part_file = fingerprint[:split_interval * 1000]
part_file.export(open(source_paths, "wb"), format="wav")
fingerprint = fingerprint[split_interval * 1000:]
part_number += 1
# export and quit if max length reached
if max_output_length > 0 and total_duration > max_output_length:
break
except (KeyboardInterrupt, SystemExit):
raise
except:
print("Failed:", file)
if output_mels and file_mels is not None:
if file_mels.shape[1] > 1:
file_mels = np.mean(file_mels, axis=1)
if all_mels is None:
all_mels = file_mels
else:
all_mels = np.hstack([all_mels, file_mels])
num_files_scanned += 1
source_paths = "output/{0}-{1}-P{2}.wav".format(
seed, timestamp, part_number)
fingerprint.export(open(source_paths, "wb"), format="wav")
# join all the parts
print("Joining parts...")
self.join_parts(seed, timestamp)
print("FINISHED")
parser = argparse.ArgumentParser()
parser.add_argument(
"paths", nargs="+", help="the folders containing the music to summarise")
parser.add_argument(
"--exclude_paths", help="folders to exclude from the summary")
parser.add_argument(
"--exclude_files", help="files to exclude from the summary")
parser.add_argument(
"--seed",
default=random.randint(0, 100000000),
help="set this to get the same result each time")
parser.add_argument(
"--chunk_duration_range",
default=[30, 600],
nargs=2,
help="the range of the grain size range in ms")
parser.add_argument(
"--chunk_overlap_range",
default=[0.9, 0.99],
nargs=2,
help="the range of the grain overlap ratio")
parser.add_argument(
"--chunk_skip_range",
default=[1000, 10000],
nargs=2,
help="the range of the time in ms between each grain")
parser.add_argument(
"--big_chunk_length",
default=[100, 4000],
nargs=2,
help="the range of the length of the big chunks")
parser.add_argument(
"--noise_rate_1",
default=0.05,
help="the rate at which the grains fluctuate")
parser.add_argument(
"--noise_rate_2",
default=0.05,
help="the rate at which the grains fluctuate")
args = parser.parse_args()
fingerprinter = FingerPrinter()
fingerprinter.run(
args.paths,
seed=args.seed,
exclude_paths=args.exclude_paths,
exclude_files=args.exclude_files,
chunk_duration_range=args.chunk_duration_range,
chunk_overlap_range=args.chunk_overlap_range,
chunk_skip_range=args.chunk_skip_range,
big_chunk_length=args.big_chunk_length,
noise_rate_1=args.noise_rate_1,
noise_rate_2=args.noise_rate_2,
split_interval=60,
time_scale=1)