forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
IndexBinaryIVF.cpp
671 lines (553 loc) · 19.9 KB
/
IndexBinaryIVF.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// Copyright 2004-present Facebook. All Rights Reserved
// -*- c++ -*-
#include "IndexBinaryIVF.h"
#include <cstdio>
#include <memory>
#include "hamming.h"
#include "utils.h"
#include "AuxIndexStructures.h"
#include "FaissAssert.h"
#include "IndexFlat.h"
namespace faiss {
IndexBinaryIVF::IndexBinaryIVF(IndexBinary *quantizer, size_t d, size_t nlist)
: IndexBinary(d),
invlists(new ArrayInvertedLists(nlist, code_size)),
own_invlists(true),
nprobe(1),
max_codes(0),
maintain_direct_map(false),
quantizer(quantizer),
nlist(nlist),
own_fields(false),
clustering_index(nullptr)
{
FAISS_THROW_IF_NOT (d == quantizer->d);
is_trained = quantizer->is_trained && (quantizer->ntotal == nlist);
cp.niter = 10;
}
IndexBinaryIVF::IndexBinaryIVF()
: invlists(nullptr),
own_invlists(false),
nprobe(1),
max_codes(0),
maintain_direct_map(false),
quantizer(nullptr),
nlist(0),
own_fields(false),
clustering_index(nullptr)
{}
void IndexBinaryIVF::add(idx_t n, const uint8_t *x) {
add_with_ids(n, x, nullptr);
}
void IndexBinaryIVF::add_with_ids(idx_t n, const uint8_t *x, const idx_t *xids) {
add_core(n, x, xids, nullptr);
}
void IndexBinaryIVF::add_core(idx_t n, const uint8_t *x, const idx_t *xids,
const idx_t *precomputed_idx) {
FAISS_THROW_IF_NOT(is_trained);
assert(invlists);
FAISS_THROW_IF_NOT_MSG(!(maintain_direct_map && xids),
"cannot have direct map and add with ids");
const idx_t * idx;
std::unique_ptr<idx_t[]> scoped_idx;
if (precomputed_idx) {
idx = precomputed_idx;
} else {
scoped_idx.reset(new idx_t[n]);
quantizer->assign(n, x, scoped_idx.get());
idx = scoped_idx.get();
}
long n_add = 0;
for (size_t i = 0; i < n; i++) {
idx_t id = xids ? xids[i] : ntotal + i;
idx_t list_no = idx[i];
if (list_no < 0)
continue;
const uint8_t *xi = x + i * code_size;
size_t offset = invlists->add_entry(list_no, id, xi);
if (maintain_direct_map)
direct_map.push_back(list_no << 32 | offset);
n_add++;
}
if (verbose) {
printf("IndexBinaryIVF::add_with_ids: added %ld / %ld vectors\n",
n_add, n);
}
ntotal += n_add;
}
void IndexBinaryIVF::make_direct_map(bool new_maintain_direct_map) {
// nothing to do
if (new_maintain_direct_map == maintain_direct_map)
return;
if (new_maintain_direct_map) {
direct_map.resize(ntotal, -1);
for (size_t key = 0; key < nlist; key++) {
size_t list_size = invlists->list_size(key);
const idx_t *idlist = invlists->get_ids(key);
for (size_t ofs = 0; ofs < list_size; ofs++) {
FAISS_THROW_IF_NOT_MSG(0 <= idlist[ofs] && idlist[ofs] < ntotal,
"direct map supported only for seuquential ids");
direct_map[idlist[ofs]] = key << 32 | ofs;
}
}
} else {
direct_map.clear();
}
maintain_direct_map = new_maintain_direct_map;
}
void IndexBinaryIVF::search(idx_t n, const uint8_t *x, idx_t k,
int32_t *distances, idx_t *labels) const {
std::unique_ptr<idx_t[]> idx(new idx_t[n * nprobe]);
std::unique_ptr<int32_t[]> coarse_dis(new int32_t[n * nprobe]);
double t0 = getmillisecs();
quantizer->search(n, x, nprobe, coarse_dis.get(), idx.get());
indexIVF_stats.quantization_time += getmillisecs() - t0;
t0 = getmillisecs();
invlists->prefetch_lists(idx.get(), n * nprobe);
search_preassigned(n, x, k, idx.get(), coarse_dis.get(),
distances, labels, false);
indexIVF_stats.search_time += getmillisecs() - t0;
}
void IndexBinaryIVF::reconstruct(idx_t key, uint8_t *recons) const {
FAISS_THROW_IF_NOT_MSG(direct_map.size() == ntotal,
"direct map is not initialized");
idx_t list_no = direct_map[key] >> 32;
idx_t offset = direct_map[key] & 0xffffffff;
reconstruct_from_offset(list_no, offset, recons);
}
void IndexBinaryIVF::reconstruct_n(idx_t i0, idx_t ni, uint8_t *recons) const {
FAISS_THROW_IF_NOT(ni == 0 || (i0 >= 0 && i0 + ni <= ntotal));
for (idx_t list_no = 0; list_no < nlist; list_no++) {
size_t list_size = invlists->list_size(list_no);
const Index::idx_t *idlist = invlists->get_ids(list_no);
for (idx_t offset = 0; offset < list_size; offset++) {
idx_t id = idlist[offset];
if (!(id >= i0 && id < i0 + ni)) {
continue;
}
uint8_t *reconstructed = recons + (id - i0) * d;
reconstruct_from_offset(list_no, offset, reconstructed);
}
}
}
void IndexBinaryIVF::search_and_reconstruct(idx_t n, const uint8_t *x, idx_t k,
int32_t *distances, idx_t *labels,
uint8_t *recons) const {
std::unique_ptr<idx_t[]> idx(new idx_t[n * nprobe]);
std::unique_ptr<int32_t[]> coarse_dis(new int32_t[n * nprobe]);
quantizer->search(n, x, nprobe, coarse_dis.get(), idx.get());
invlists->prefetch_lists(idx.get(), n * nprobe);
// search_preassigned() with `store_pairs` enabled to obtain the list_no
// and offset into `codes` for reconstruction
search_preassigned(n, x, k, idx.get(), coarse_dis.get(),
distances, labels, /* store_pairs */true);
for (idx_t i = 0; i < n; ++i) {
for (idx_t j = 0; j < k; ++j) {
idx_t ij = i * k + j;
idx_t key = labels[ij];
uint8_t *reconstructed = recons + ij * d;
if (key < 0) {
// Fill with NaNs
memset(reconstructed, -1, sizeof(*reconstructed) * d);
} else {
int list_no = key >> 32;
int offset = key & 0xffffffff;
// Update label to the actual id
labels[ij] = invlists->get_single_id(list_no, offset);
reconstruct_from_offset(list_no, offset, reconstructed);
}
}
}
}
void IndexBinaryIVF::reconstruct_from_offset(idx_t list_no, idx_t offset,
uint8_t *recons) const {
memcpy(recons, invlists->get_single_code(list_no, offset), code_size);
}
void IndexBinaryIVF::reset() {
direct_map.clear();
invlists->reset();
ntotal = 0;
}
size_t IndexBinaryIVF::remove_ids(const IDSelector& sel) {
FAISS_THROW_IF_NOT_MSG(!maintain_direct_map,
"direct map remove not implemented");
std::vector<idx_t> toremove(nlist);
#pragma omp parallel for
for (idx_t i = 0; i < nlist; i++) {
idx_t l0 = invlists->list_size (i), l = l0, j = 0;
const idx_t *idsi = invlists->get_ids(i);
while (j < l) {
if (sel.is_member(idsi[j])) {
l--;
invlists->update_entry(
i, j,
invlists->get_single_id(i, l),
invlists->get_single_code(i, l));
} else {
j++;
}
}
toremove[i] = l0 - l;
}
// this will not run well in parallel on ondisk because of possible shrinks
size_t nremove = 0;
for (idx_t i = 0; i < nlist; i++) {
if (toremove[i] > 0) {
nremove += toremove[i];
invlists->resize(
i, invlists->list_size(i) - toremove[i]);
}
}
ntotal -= nremove;
return nremove;
}
void IndexBinaryIVF::train(idx_t n, const uint8_t *x) {
if (verbose) {
printf("Training quantizer\n");
}
if (quantizer->is_trained && (quantizer->ntotal == nlist)) {
if (verbose) {
printf("IVF quantizer does not need training.\n");
}
} else {
if (verbose) {
printf("Training quantizer on %ld vectors in %dD\n", n, d);
}
Clustering clus(d, nlist, cp);
quantizer->reset();
std::unique_ptr<float[]> x_f(new float[n * d]);
binary_to_real(n * d, x, x_f.get());
IndexFlatL2 index_tmp(d);
if (clustering_index && verbose) {
printf("using clustering_index of dimension %d to do the clustering\n",
clustering_index->d);
}
clus.train(n, x_f.get(), clustering_index ? *clustering_index : index_tmp);
std::unique_ptr<uint8_t[]> x_b(new uint8_t[clus.k * code_size]);
real_to_binary(d * clus.k, clus.centroids.data(), x_b.get());
quantizer->add(clus.k, x_b.get());
quantizer->is_trained = true;
}
is_trained = true;
}
void IndexBinaryIVF::merge_from(IndexBinaryIVF &other, idx_t add_id) {
// minimal sanity checks
FAISS_THROW_IF_NOT(other.d == d);
FAISS_THROW_IF_NOT(other.nlist == nlist);
FAISS_THROW_IF_NOT(other.code_size == code_size);
FAISS_THROW_IF_NOT_MSG((!maintain_direct_map &&
!other.maintain_direct_map),
"direct map copy not implemented");
FAISS_THROW_IF_NOT_MSG(typeid (*this) == typeid (other),
"can only merge indexes of the same type");
invlists->merge_from (other.invlists, add_id);
ntotal += other.ntotal;
other.ntotal = 0;
}
void IndexBinaryIVF::replace_invlists(InvertedLists *il, bool own) {
FAISS_THROW_IF_NOT(il->nlist == nlist &&
il->code_size == code_size);
if (own_invlists) {
delete invlists;
}
invlists = il;
own_invlists = own;
}
namespace {
using idx_t = Index::idx_t;
template<class HammingComputer, bool store_pairs>
struct IVFBinaryScannerL2: BinaryInvertedListScanner {
HammingComputer hc;
size_t code_size;
IVFBinaryScannerL2 (size_t code_size): code_size (code_size)
{}
void set_query (const uint8_t *query_vector) override {
hc.set (query_vector, code_size);
}
idx_t list_no;
void set_list (idx_t list_no, uint8_t /* coarse_dis */) override {
this->list_no = list_no;
}
uint32_t distance_to_code (const uint8_t *code) const override {
return hc.hamming (code);
}
size_t scan_codes (size_t n,
const uint8_t *codes,
const idx_t *ids,
int32_t *simi, idx_t *idxi,
size_t k) const override
{
using C = CMax<int32_t, idx_t>;
size_t nup = 0;
for (size_t j = 0; j < n; j++) {
uint32_t dis = hc.hamming (codes);
if (dis < simi[0]) {
heap_pop<C> (k, simi, idxi);
idx_t id = store_pairs ? (list_no << 32 | j) : ids[j];
heap_push<C> (k, simi, idxi, dis, id);
nup++;
}
codes += code_size;
}
return nup;
}
};
template <bool store_pairs>
BinaryInvertedListScanner *select_IVFBinaryScannerL2 (size_t code_size) {
switch (code_size) {
#define HANDLE_CS(cs) \
case cs: \
return new IVFBinaryScannerL2<HammingComputer ## cs, store_pairs> (cs);
HANDLE_CS(4);
HANDLE_CS(8);
HANDLE_CS(16);
HANDLE_CS(20);
HANDLE_CS(32);
HANDLE_CS(64);
#undef HANDLE_CS
default:
if (code_size % 8 == 0) {
return new IVFBinaryScannerL2<HammingComputerM8,
store_pairs> (code_size);
} else if (code_size % 4 == 0) {
return new IVFBinaryScannerL2<HammingComputerM4,
store_pairs> (code_size);
} else {
return new IVFBinaryScannerL2<HammingComputerDefault,
store_pairs> (code_size);
}
}
}
void search_knn_hamming_heap(const IndexBinaryIVF& ivf,
size_t n,
const uint8_t *x,
idx_t k,
const idx_t *keys,
const int32_t * coarse_dis,
int32_t *distances, idx_t *labels,
bool store_pairs,
const IVFSearchParameters *params)
{
long nprobe = params ? params->nprobe : ivf.nprobe;
long max_codes = params ? params->max_codes : ivf.max_codes;
MetricType metric_type = ivf.metric_type;
// almost verbatim copy from IndexIVF::search_preassigned
size_t nlistv = 0, ndis = 0, nheap = 0;
using HeapForIP = CMin<int32_t, idx_t>;
using HeapForL2 = CMax<int32_t, idx_t>;
#pragma omp parallel if(n > 1) reduction(+: nlistv, ndis, nheap)
{
std::unique_ptr<BinaryInvertedListScanner> scanner
(ivf.get_InvertedListScanner (store_pairs));
#pragma omp for
for (size_t i = 0; i < n; i++) {
const uint8_t *xi = x + i * ivf.code_size;
scanner->set_query(xi);
const idx_t * keysi = keys + i * nprobe;
int32_t * simi = distances + k * i;
idx_t * idxi = labels + k * i;
if (metric_type == METRIC_INNER_PRODUCT) {
heap_heapify<HeapForIP> (k, simi, idxi);
} else {
heap_heapify<HeapForL2> (k, simi, idxi);
}
size_t nscan = 0;
for (size_t ik = 0; ik < nprobe; ik++) {
idx_t key = keysi[ik]; /* select the list */
if (key < 0) {
// not enough centroids for multiprobe
continue;
}
FAISS_THROW_IF_NOT_FMT
(key < (idx_t) ivf.nlist,
"Invalid key=%ld at ik=%ld nlist=%ld\n",
key, ik, ivf.nlist);
scanner->set_list (key, coarse_dis[i * nprobe + ik]);
nlistv++;
size_t list_size = ivf.invlists->list_size(key);
InvertedLists::ScopedCodes scodes (ivf.invlists, key);
std::unique_ptr<InvertedLists::ScopedIds> sids;
const Index::idx_t * ids = nullptr;
if (!store_pairs) {
sids.reset (new InvertedLists::ScopedIds (ivf.invlists, key));
ids = sids->get();
}
nheap += scanner->scan_codes (list_size, scodes.get(),
ids, simi, idxi, k);
nscan += list_size;
if (max_codes && nscan >= max_codes)
break;
}
ndis += nscan;
if (metric_type == METRIC_INNER_PRODUCT) {
heap_reorder<HeapForIP> (k, simi, idxi);
} else {
heap_reorder<HeapForL2> (k, simi, idxi);
}
} // parallel for
} // parallel
indexIVF_stats.nq += n;
indexIVF_stats.nlist += nlistv;
indexIVF_stats.ndis += ndis;
indexIVF_stats.nheap_updates += nheap;
}
template<class HammingComputer, bool store_pairs>
void search_knn_hamming_count(const IndexBinaryIVF& ivf,
size_t nx,
const uint8_t *x,
const idx_t *keys,
int k,
int32_t *distances,
idx_t *labels,
const IVFSearchParameters *params) {
const int nBuckets = ivf.d + 1;
std::vector<int> all_counters(nx * nBuckets, 0);
std::unique_ptr<idx_t[]> all_ids_per_dis(new idx_t[nx * nBuckets * k]);
long nprobe = params ? params->nprobe : ivf.nprobe;
long max_codes = params ? params->max_codes : ivf.max_codes;
std::vector<HCounterState<HammingComputer>> cs;
for (size_t i = 0; i < nx; ++i) {
cs.push_back(HCounterState<HammingComputer>(
all_counters.data() + i * nBuckets,
all_ids_per_dis.get() + i * nBuckets * k,
x + i * ivf.code_size,
ivf.d,
k
));
}
size_t nlistv = 0, ndis = 0;
#pragma omp parallel for reduction(+: nlistv, ndis)
for (size_t i = 0; i < nx; i++) {
const idx_t * keysi = keys + i * nprobe;
HCounterState<HammingComputer>& csi = cs[i];
size_t nscan = 0;
for (size_t ik = 0; ik < nprobe; ik++) {
idx_t key = keysi[ik]; /* select the list */
if (key < 0) {
// not enough centroids for multiprobe
continue;
}
FAISS_THROW_IF_NOT_FMT (
key < (idx_t) ivf.nlist,
"Invalid key=%ld at ik=%ld nlist=%ld\n",
key, ik, ivf.nlist);
nlistv++;
size_t list_size = ivf.invlists->list_size(key);
InvertedLists::ScopedCodes scodes (ivf.invlists, key);
const uint8_t *list_vecs = scodes.get();
const Index::idx_t *ids = store_pairs
? nullptr
: ivf.invlists->get_ids(key);
for (size_t j = 0; j < list_size; j++) {
const uint8_t * yj = list_vecs + ivf.code_size * j;
idx_t id = store_pairs ? (key << 32 | j) : ids[j];
csi.update_counter(yj, id);
}
if (ids)
ivf.invlists->release_ids (key, ids);
nscan += list_size;
if (max_codes && nscan >= max_codes)
break;
}
ndis += nscan;
int nres = 0;
for (int b = 0; b < nBuckets && nres < k; b++) {
for (int l = 0; l < csi.counters[b] && nres < k; l++) {
labels[i * k + nres] = csi.ids_per_dis[b * k + l];
distances[i * k + nres] = b;
nres++;
}
}
while (nres < k) {
labels[i * k + nres] = -1;
distances[i * k + nres] = std::numeric_limits<int32_t>::max();
++nres;
}
}
indexIVF_stats.nq += nx;
indexIVF_stats.nlist += nlistv;
indexIVF_stats.ndis += ndis;
}
template<bool store_pairs>
void search_knn_hamming_count_1 (
const IndexBinaryIVF& ivf,
size_t nx,
const uint8_t *x,
const idx_t *keys,
int k,
int32_t *distances,
idx_t *labels,
const IVFSearchParameters *params) {
switch (ivf.code_size) {
#define HANDLE_CS(cs) \
case cs: \
search_knn_hamming_count<HammingComputer ## cs, store_pairs>( \
ivf, nx, x, keys, k, distances, labels, params); \
break;
HANDLE_CS(4);
HANDLE_CS(8);
HANDLE_CS(16);
HANDLE_CS(20);
HANDLE_CS(32);
HANDLE_CS(64);
#undef HANDLE_CS
default:
if (ivf.code_size % 8 == 0) {
search_knn_hamming_count<HammingComputerM8, store_pairs>
(ivf, nx, x, keys, k, distances, labels, params);
} else if (ivf.code_size % 4 == 0) {
search_knn_hamming_count<HammingComputerM4, store_pairs>
(ivf, nx, x, keys, k, distances, labels, params);
} else {
search_knn_hamming_count<HammingComputerDefault, store_pairs>
(ivf, nx, x, keys, k, distances, labels, params);
}
break;
}
}
} // namespace
BinaryInvertedListScanner *IndexBinaryIVF::get_InvertedListScanner
(bool store_pairs) const
{
if (store_pairs) {
return select_IVFBinaryScannerL2<true> (code_size);
} else {
return select_IVFBinaryScannerL2<false> (code_size);
}
}
void IndexBinaryIVF::search_preassigned(idx_t n, const uint8_t *x, idx_t k,
const idx_t *idx,
const int32_t * coarse_dis,
int32_t *distances, idx_t *labels,
bool store_pairs,
const IVFSearchParameters *params
) const {
if (use_heap) {
search_knn_hamming_heap (*this, n, x, k, idx, coarse_dis,
distances, labels, store_pairs,
params);
} else {
if (store_pairs) {
search_knn_hamming_count_1<true>
(*this, n, x, idx, k, distances, labels, params);
} else {
search_knn_hamming_count_1<false>
(*this, n, x, idx, k, distances, labels, params);
}
}
}
IndexBinaryIVF::~IndexBinaryIVF() {
if (own_invlists) {
delete invlists;
}
if (own_fields) {
delete quantizer;
}
}
} // namespace faiss