Skip to content

Graph Neural Network Test Environment for Anomaly Detection in Provenance Graph Data

Notifications You must be signed in to change notification settings

robhta/gnn_testenv

Repository files navigation

gnn_testenv

Graph Neural Network Test Environment for Anomaly Detection in Provenance Graph Data

0. Download the data

https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md https://drive.google.com/drive/folders/179uDuz62Aw61Ehft6MoJCpPeBEz16VFy For the example_run.ipynb the data Engegement3/data/cadets/ta1-cadets-e3-official-2.json.tar.gz is needed.

1. Install Docker

https://docs.docker.com/engine/install/

2. Start Docker Compose

First change the path in docker-compose.yml of the volume to the path were your want to store the data e.g. :/output/ -> /home/buchta/gnn_testenv/DARPA/:/output/

cd db 
docker compose up -d
cd .. 

Adminder is available at http://localhost:8080 The database is available at localhost:5432

3. Install Pytorch Geometric

https://pytorch-geometric.readthedocs.io/en/latest/install/installation.html

4. Install the requirements.txt

pip install -r requirements.txt

5. Install optional packages for PyG based on your CUDA version

e.g.

pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.0.0+cu118.html

5. Install package

pip install -e .

6. Place the data in the data folder

cp ta1-cadets-e3-official-2.json.tar.gz /home/buchta/gnn_testenv/DARPA/cadets/03_record 

7. Replace the paths in the config file

configs/eng3/cadets/cadets_03_record.ini

8. Run the Example script with Juypter Notebook

About

Graph Neural Network Test Environment for Anomaly Detection in Provenance Graph Data

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published