-
Notifications
You must be signed in to change notification settings - Fork 10
/
kitti.py
463 lines (415 loc) · 21.6 KB
/
kitti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
# Adapted from:
# https://github.com/nianticlabs/monodepth2/blob/master/datasets/kitti_dataset.py
# https://github.com/nianticlabs/monodepth2/blob/master/datasets/mono_dataset.py#L28
import argparse
from datetime import datetime
from os import PathLike
from pathlib import Path
from shutil import copyfile
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
from PIL import Image
from torch import Tensor
from tqdm import tqdm
from datasets.utils import Dataset
class Kitti(Dataset):
def __init__(
self,
data_path: Union[str, Path, PathLike],
sequences: Union[int, List[int], Tuple[int, ...]],
frame_ids: Union[List[int], Tuple[int, ...]],
scales: Optional[Union[List[int], Tuple[int, ...]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
do_augmentation: bool = False,
views: Union[List[str], Tuple[str, ...]] = ('left', ),
with_depth: bool = False,
with_mask: bool = False,
poses: bool = False,
min_distance: float = 0,
) -> None:
super().__init__(data_path,
frame_ids,
scales,
height,
width,
do_augmentation,
views,
with_depth,
with_mask,
min_distance=min_distance)
# if self.with_depth and (sequences != 8 and sequences[0] != 8):
# raise ValueError('gt_depth only supported for sequence 8')
self.include_poses = poses
sequences = (sequences, ) if isinstance(sequences, int) else sequences
if any(s > 10 for s in sequences):
raise ValueError('Passed a sequence without ground truth data.')
if 3 in sequences:
raise ValueError('Passed a sequence without IMU data.')
self.sequences = sorted(sequences)
# NOTE: Make sure your intrinsics matrix is *normalized* by the original image size.
# To normalize you need to scale the first row by 1 / image_width and the second row
# by 1 / image_height. Monodepth2 assumes a principal point to be exactly centered.
# If your principal point is far from the center you might need to disable the horizontal
# flip augmentation.
self.camera_matrix = np.array(
[[0.58, 0, 0.5, 0], [0, 1.92, 0.5, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=np.float32)
self._load_image_filenames()
self.left_depth_filenames = self._get_filenames(
mode='depth_left') if self.with_depth else []
if self.with_mask:
self._load_mask_filenames()
self.velocity_filenames = self._get_filenames('velocity')
self.timestamps = self._load_timestamps()
self.global_poses = self._load_global_poses()
# Make sure that the RGB images and the depth data matches
# Adjust other data as well
if self.with_depth:
assert len(sequences) == 1 # ToDo: update sequence_indices
depth_numbers = [int(d.stem) for d in self.left_depth_filenames]
tmp_images = []
tmp_velocity = []
tmp_timestamps = []
tmp_masks = []
tmp_poses = []
for i, img in enumerate(self.left_img_filenames):
if int(img.stem) in depth_numbers:
tmp_images.append(img)
tmp_velocity.append(self.velocity_filenames[i])
tmp_timestamps.append(self.timestamps[i])
tmp_poses.append(self.global_poses[i])
if self.with_mask:
tmp_masks.append(self.left_mask_filenames[i])
self.left_img_filenames = tmp_images
self.velocity_filenames = tmp_velocity
self.timestamps = tmp_timestamps
self.global_poses = np.stack(tmp_poses)
self.left_mask_filenames = tmp_masks
self.sequence_indices[sequences[0]] = (0, len(self.left_img_filenames) - 1)
# Filter data to meet minimum distance requirements
self.relative_distances = self._compute_relative_distance()
if self.min_distance > 0:
assert len(sequences) == 1 # ToDo: update sequence_indices
self._filter_by_distance(self.min_distance)
self.relative_poses = self._load_relative_poses() # Has to be done in the end
def _get_filenames(self, mode: str) -> List[Path]:
"""Load the file names of the corresponding subfolders of a sequence.
"""
valid_modes = [
'rgb_left', 'rgb_right', 'lidar', 'depth_left', 'mask_left', 'mask_right', 'velocity'
]
if mode not in valid_modes:
raise ValueError(f'mode must be one of {valid_modes}.')
mode_dir = {
'rgb_left': 'image_2',
'rgb_right': 'image_3',
'lidar': 'velodyne',
'depth_left': 'gt_depth/image_02',
'mask_left': 'segm_mask/image_2',
'mask_right': 'segm_mask/image_3',
'velocity': 'oxts/data',
}[mode]
mode_ext = {
'rgb_left': 'png',
'rgb_right': 'png',
'lidar': 'bin',
'depth_left': 'png',
'mask_left': 'png',
'mask_right': 'png',
'velocity': 'txt',
}[mode]
filenames = []
for sequence in self.sequences:
sequence_index = [len(filenames)]
sequence_data_path = self.data_path / 'sequences' / f'{sequence:02}' / mode_dir
filenames += sorted(sequence_data_path.glob(f'*.{mode_ext}'))
sequence_index.append(len(filenames) - 1)
if sequence not in self.sequence_indices:
self.sequence_indices[sequence] = tuple(sequence_index)
return filenames
def _load_timestamps(self) -> List[int]:
timestamp_format = '%Y-%m-%d %H:%M:%S.%f'
timestamps_ = []
for sequence in self.sequences:
# Load timestamps as written in the file, e.g., 2011-10-03 12:55:34.997992704
timestamps_file = self.data_path / 'sequences' / f'{sequence:02}' / 'oxts' / \
'timestamps.txt'
with open(timestamps_file, 'r', encoding='utf-8') as f:
str_timestamps = f.read().splitlines()
# Convert relative to timestamp of initial frame and output in seconds
# Discard nanoseconds as they are not supported by datetime
sequence_timestamps = []
for timestamp in str_timestamps:
sequence_timestamps.append(
(datetime.strptime(timestamp[:-3], timestamp_format) -
datetime.strptime(str_timestamps[0][:-3], timestamp_format)).total_seconds())
timestamps_ += sequence_timestamps
return timestamps_
def _load_global_poses(self) -> np.ndarray:
global_poses = []
for sequence in self.sequences:
# Load global poses
poses_data_path = self.data_path / 'poses' / f'{sequence:02}.txt'
sequence_poses = np.loadtxt(str(poses_data_path), dtype=np.float32).reshape((-1, 3, 4))
# Convert to homogenous coordinates
sequence_poses = np.concatenate(
(sequence_poses, np.zeros((sequence_poses.shape[0], 1, 4), dtype=np.float32)), 1)
sequence_poses[:, 3, 3] = 1
global_poses.append(sequence_poses)
return np.concatenate(global_poses)
def _load_relative_poses(self) -> np.ndarray:
relative_poses = []
for sequence in self.sequences:
indices = self.sequence_indices[sequence]
sequence_poses = self.global_poses[indices[0]:indices[1] + 1]
# Convert global poses to poses that are relative to the previous frame
# The initial value is zero as there is no previous frame
sequence_poses_relative = [np.eye(4, dtype=np.float32)]
for i in range(1, len(sequence_poses)):
sequence_poses_relative.append(
np.linalg.inv(sequence_poses[i - 1]) @ sequence_poses[i])
sequence_poses_relative = np.stack(sequence_poses_relative)
relative_poses.append(sequence_poses_relative)
return np.concatenate(relative_poses)
def _compute_relative_distance(self) -> List[float]:
relative_distances = [0.]
for index in range(1, len(self.timestamps)):
relative_distances.append(self._load_relative_distance(index))
return relative_distances
def _filter_by_index(self, keep_indices: Union[np.ndarray, List[int]]) -> None:
# Remove all timestamps, images, and velocities without poses
self.left_img_filenames = [self.left_img_filenames[i]
for i in keep_indices] if self.left_img_filenames else []
self.right_img_filenames = [self.right_img_filenames[i]
for i in keep_indices] if self.right_img_filenames else []
self.left_mask_filenames = [self.left_mask_filenames[i]
for i in keep_indices] if self.left_mask_filenames else []
self.right_mask_filenames = [self.right_mask_filenames[i]
for i in keep_indices] if self.right_mask_filenames else []
self.left_depth_filenames = [self.left_depth_filenames[i]
for i in keep_indices] if self.left_depth_filenames else []
self.velocity_filenames = [self.velocity_filenames[i] for i in keep_indices]
self.timestamps = [self.timestamps[i] for i in keep_indices]
self.global_poses = [self.global_poses[i] for i in keep_indices]
def _filter_by_distance(self, min_distance: float) -> None:
distance = 0
keep_indices = [0]
relative_distances = [0]
for i, relative_distance in enumerate(self.relative_distances[1:], start=1):
distance += np.abs(relative_distance)
if distance >= min_distance:
keep_indices.append(i)
relative_distances.append(distance)
distance = 0
self._filter_by_index(keep_indices)
# Do no re-compute with function to exploit higher frequency
self.relative_distances = relative_distances
def __getitem__(self, index: int) -> Dict[Any, Tensor]:
"""
('rgb', <frame_id>, <scale>)
('camera_matrix', <scale>)
('inv_camera_matrix', <scale>)
('relative_pose', <frame_id>) | with respect to frame_id - 1
<frame_id> is relative to the requested index, i.e., the temporal neighbors
<scale> == -1 denotes the original size and is deleted before returning
"""
img_filenames, mask_filenames, index, do_color_augmentation, do_flip = self._pre_getitem(
index)
# Load the color images
item = {('index'): index}
original_image_shape = None
for frame_id in self.frame_ids:
rgb = Image.open(img_filenames[index + frame_id]).convert('RGB')
if frame_id == 0:
original_image_shape = rgb.size
if do_flip:
rgb = rgb.transpose(Image.FLIP_LEFT_RIGHT)
if len(self.scales) > 0:
# Immediately rescale since the images are of various size across the sequences
# Keeping the original resolution means that pytorch cannot batch images from
# different sequences
rgb = self.resize[0](rgb)
item[('rgb', frame_id, 0)] = rgb
else:
item[('rgb', frame_id, -1)] = rgb
# Adjusting intrinsics to match each scale in the pyramid
for scale in range(len(self.scales)):
camera_matrix, inv_camera_matrix = self._scale_camera_matrix(self.camera_matrix, scale)
item[('camera_matrix', scale)] = camera_matrix
item[('inv_camera_matrix', scale)] = inv_camera_matrix
if len(self.scales) == 0:
# Load camera matrix of raw image data
camera_matrix = self.camera_matrix.copy()
camera_matrix[0, :] *= original_image_shape[0]
camera_matrix[1, :] *= original_image_shape[1]
item[('camera_matrix', -1)] = camera_matrix
item[('inv_camera_matrix', -1)] = np.linalg.pinv(camera_matrix)
# Load mask of potentially dynamic objects
if self.with_mask:
frame_id = 0
mask = Image.open(mask_filenames[index + frame_id])
if do_flip:
mask = mask.transpose(Image.FLIP_LEFT_RIGHT)
if len(self.scales) > 0:
mask = self.resize[0](mask)
item[('mask', frame_id, 0)] = mask
else:
item[('mask', frame_id, -1)] = mask
# Load unscaled depth
if self.with_depth:
# Debugging checks
for frame_id in self.frame_ids:
assert int(img_filenames[index + frame_id].stem) == int(
self.left_depth_filenames[index + frame_id].stem)
for frame_id in self.frame_ids:
assert self.views == ('left', )
depth = Image.open(self.left_depth_filenames[index + frame_id])
if do_flip:
depth = depth.transpose(Image.FLIP_LEFT_RIGHT)
item[('depth', frame_id, -1)] = depth
# Load relative distance (except for first frame)
for frame_id in self.frame_ids[1:]:
item['relative_distance', frame_id] = self.relative_distances[index + frame_id]
if self.include_poses:
# Load the poses (except for the first frame)
for frame_id in self.frame_ids[1:]:
item[('relative_pose', frame_id)] = self.relative_poses[index + frame_id]
if do_flip:
# We also have to flip the relative pose (rotate around y-axis)
item[('relative_pose', 0)][2, 0] *= -1
item[('relative_pose', 0)][0, 2] *= -1
item[('absolute_pose', frame_id)] = self.global_poses[index + frame_id]
self._post_getitem(item, do_color_augmentation) # This will also call _preprocess()
return item
def _load_relative_distance(self, index: int) -> float:
"""
Distance in meters and with respect to the previous frame.
"""
previous_timestamp = self.timestamps[index - 1]
current_timestamp = self.timestamps[index]
delta_timestamp = current_timestamp - previous_timestamp # s
# Compute speed as norm of forward, leftward, and upward elements
previous_speed = np.linalg.norm(np.loadtxt(str(self.velocity_filenames[index - 1]))[8:11])
current_speed = np.linalg.norm(np.loadtxt(str(self.velocity_filenames[index]))[8:11])
speed = (previous_speed + current_speed) / 2 # m/s
distance = speed * delta_timestamp
return distance
def _preprocess(
self,
item: Dict[Any, Tensor],
augment: Union[Callable, Tuple[Tensor, Optional[float], Optional[float], Optional[float],
Optional[float]]],
) -> None:
# Apply augmentation
# Convert to list object as we are changing the size during the iteration
for key in list(item.keys()):
value = item[key]
if 'rgb' in key:
k, frame_id, scale = key
item[key] = self._to_tensor(value)
# if self.do_augmentation:
item[(f'{k}_aug', frame_id, scale)] = self._to_tensor(augment(value))
elif 'camera_matrix' in key or 'inv_camera_matrix' in key:
item[key] = torch.from_numpy(value)
elif 'depth' in key:
item[key] = self._to_tensor(value) / 100 # Convert cm to m
elif 'relative_pose' in key or 'absolute_pose' in key:
item[key] = self._to_tensor(value)
elif 'mask' in key:
item[key] = torch.round(self._to_tensor(value))
# =========================================================
def extract_raw_data(
raw_dataset_path: Path,
odometry_dataset_path: Path,
oxts: bool = True,
gt_depth: bool = False,
) -> None:
# yapf: disable
# Mapping between KITTI Raw Drives and KITTI Odometry Sequences
KITTI_RAW_SEQ_MAPPING = {
0: {'date': '2011_10_03', 'drive': 27, 'start_frame': 0, 'end_frame': 4540},
1: {'date': '2011_10_03', 'drive': 42, 'start_frame': 0, 'end_frame': 1100},
2: {'date': '2011_10_03', 'drive': 34, 'start_frame': 0, 'end_frame': 4660},
# 3: {'date': '2011_09_26', 'drive': 67, 'start_frame': 0, 'end_frame': 800}, # No IMU
4: {'date': '2011_09_30', 'drive': 16, 'start_frame': 0, 'end_frame': 270},
5: {'date': '2011_09_30', 'drive': 18, 'start_frame': 0, 'end_frame': 2760},
6: {'date': '2011_09_30', 'drive': 20, 'start_frame': 0, 'end_frame': 1100},
7: {'date': '2011_09_30', 'drive': 27, 'start_frame': 0, 'end_frame': 1100},
8: {'date': '2011_09_30', 'drive': 28, 'start_frame': 1100, 'end_frame': 5170},
9: {'date': '2011_09_30', 'drive': 33, 'start_frame': 0, 'end_frame': 1590},
10: {'date': '2011_09_30', 'drive': 34, 'start_frame': 0, 'end_frame': 1200},
}
# yapf: enable
total_frames = 0
for mapping in KITTI_RAW_SEQ_MAPPING.values():
total_frames += (mapping['end_frame'] - mapping['start_frame'] + 1)
if gt_depth:
with tqdm(desc='Copying depth files', total=total_frames * 2, unit='files') as pbar:
for sequence, mapping in KITTI_RAW_SEQ_MAPPING.items():
# This is the improved gt depth using 5 consecutive frames from
# "Sparsity invariant CNNs", J. Uhrig et al., 3DV, 2017.
odometry_sequence_path = odometry_dataset_path / f'{sequence:02}' / 'gt_depth'
split = 'val' if sequence == 4 else 'train'
raw_sequence_path = raw_dataset_path / split / \
f'{mapping["date"]}_drive_{mapping["drive"]:04}_sync' / \
'proj_depth' / 'groundtruth'
if not raw_sequence_path.exists():
continue
for image in ['image_02', 'image_03']:
image_raw_sequence_path = raw_sequence_path / image
(odometry_sequence_path / image).mkdir(exist_ok=True, parents=True)
raw_filenames = sorted(image_raw_sequence_path.glob('*'))
for raw_filename in raw_filenames:
odometry_filename = odometry_sequence_path / image / raw_filename.name
frame = int(raw_filename.stem)
if mapping['start_frame'] <= frame <= mapping['end_frame']:
copyfile(raw_filename, odometry_filename)
pbar.update(1)
pbar.set_postfix({'sequence': sequence})
if oxts:
with tqdm(desc='Copying OXTS files', total=total_frames, unit='files') as pbar:
for sequence, mapping in KITTI_RAW_SEQ_MAPPING.items():
odometry_sequence_path = odometry_dataset_path / f'{sequence:02}' / 'oxts'
raw_sequence_path = raw_dataset_path / \
f'{mapping["date"]}' / \
f'{mapping["date"]}_drive_{mapping["drive"]:04}_sync' / \
'oxts'
if not raw_sequence_path.exists():
continue
odometry_sequence_path.mkdir(exist_ok=True, parents=True)
copyfile(raw_sequence_path / 'dataformat.txt',
odometry_sequence_path / 'dataformat.txt')
with open(raw_sequence_path / 'timestamps.txt', 'r', encoding='utf-8') as f:
timestamps = f.readlines()[mapping['start_frame']:mapping['end_frame'] + 1]
with open(odometry_sequence_path / 'timestamps.txt', 'w', encoding='utf-8') as f:
f.writelines(timestamps)
for image in ['data']:
image_raw_sequence_path = raw_sequence_path / image
(odometry_sequence_path / image).mkdir(exist_ok=True, parents=True)
raw_filenames = sorted(image_raw_sequence_path.glob('*'))
for raw_filename in raw_filenames:
odometry_filename = odometry_sequence_path / image / raw_filename.name
frame = int(raw_filename.stem)
if mapping['start_frame'] <= frame <= mapping['end_frame']:
copyfile(raw_filename, odometry_filename)
pbar.update(1)
pbar.set_postfix({'sequence': sequence})
# =========================================================
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('raw_path', type=str)
parser.add_argument('odom_path', type=str)
group = parser.add_mutually_exclusive_group()
group.add_argument('--oxts', action='store_true')
group.add_argument('--depth', action='store_true')
args = parser.parse_args()
extract_raw_data(Path(args.raw_path), Path(args.odom_path), oxts=args.oxts, gt_depth=args.depth)
# seq = [i for i in range(11) if i != 3]
# dataset = Kitti('/home/voedisch/data/kitti/odometry/dataset',
# seq, (0, -1, 1), (0, 1, 2, 3),
# 192,
# 640,
# with_mask=True,
# poses=True)
# print(dataset[0].keys())