-
Notifications
You must be signed in to change notification settings - Fork 0
/
Function_XGBoost_output.R
245 lines (194 loc) · 5.95 KB
/
Function_XGBoost_output.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#### funcao tunagem XGBoost ####
tunagem_xgb <- function(base_treino, base_recipe) {
# validacao cruzada
folds <- list("Numero de folds"= 0)
folds <- svDialogs::dlg_form(folds, "Validação Cruzada - Número de partes que você vai repartir seu modelo para validação: ")$res
folds <- unlist(folds)
reamostragem <- vfold_cv(base_treino, v = folds)
#### hiperparametros ####
print("Agora vamos rodar os hiperparâmetros!")
# trees
tr <- c(100, 500, 1000, 1500)
# learn_rate
lr <- c(0.05, 0.1, 0.2, 0.3)
# min_n
mn <- c(5, 15, 30, 60, 90)
# trees
te <- c(3, 4, 6, 8, 10)
# loss_reduction
ld <- c(0, 0.05, 0.1, 0.15, 0.25, 0.35, 0.45, 0.5, 1, 2)
#mtry
mt <- seq(0.1, 1.0, length.out = 10)
#sample_size
ss <- seq(0.5, 1.0, length.out = 10)
#### learn_rate e trees ####
xgb <- parsnip::boost_tree(
min_n = 5,
mtry = 0.8,
trees = tune(),
tree_depth = 4,
learn_rate = tune(),
loss_reduction = 0,
sample_size = 0.8
) %>%
parsnip::set_mode("classification") %>%
parsnip::set_engine("xgboost")
# colocar no workflow
xgb_wkf <- workflows::workflow() %>%
workflows::add_model(xgb) %>%
workflows::add_recipe(base_recipe)
# matriz para tunagem
matriz <- tidyr::expand_grid(
learn_rate = lr,
trees = tr
)
# tunagem
tunagem_1 <- xgb_wkf %>%
tune::tune_grid(
resamples = reamostragem,
grid = matriz,
control = control_grid(save_pred = TRUE, verbose = FALSE, allow_par = TRUE),
metrics = metric_set(roc_auc)
)
# melhor hparametro
best_1 <- tunagem_1 %>% tune::select_best(metric = "roc_auc")
print("Melhores hiperparâmetros: ")
print(paste("Lean_rate = ", best_1$learn_rate))
print(paste("Trees = ", best_1$trees))
# --------------------------------------------------------------------------- #
#### min_n e tree_depth ####
xgb <- parsnip::boost_tree(
min_n = tune(),
mtry = 0.8,
trees = best_1$trees,
tree_depth = tune(),
learn_rate = best_1$learn_rate,
loss_reduction = 0,
sample_size = 0.8
) %>%
parsnip::set_mode("classification") %>%
parsnip::set_engine("xgboost")
# colocar no workflow
xgb_wkf <- workflows::workflow() %>%
workflows::add_model(xgb) %>%
workflows::add_recipe(base_recipe)
# matriz para tunagem
matriz <- tidyr::expand_grid(
tree_depth = te,
min_n = mn
)
# tunagem
tunagem_2 <- xgb_wkf %>%
tune::tune_grid(
resamples = reamostragem,
grid = matriz,
control = control_grid(save_pred = TRUE, verbose = FALSE, allow_par = TRUE),
metrics = metric_set(roc_auc)
)
# melhor hparametro
best_2 <- tunagem_2 %>% tune::select_best(metric = "roc_auc")
print(paste("Tree_depth = ", best_2$tree_depth))
print(paste("Min_n = ", best_2$min_n))
# --------------------------------------------------------------------------- #
#### loss_reduction ####
xgb <- parsnip::boost_tree(
min_n = best_2$min_n,
mtry = 0.8,
trees = best_1$trees,
tree_depth = best_2$tree_depth,
learn_rate = best_1$learn_rate,
loss_reduction = tune(),
sample_size = 0.8
) %>%
parsnip::set_mode("classification") %>%
parsnip::set_engine("xgboost")
# colocar no workflow
xgb_wkf <- workflows::workflow() %>%
workflows::add_model(xgb) %>%
workflows::add_recipe(base_recipe)
# matriz para tunagem
matriz <- tidyr::expand_grid(
loss_reduction = ld
)
# tunagem
tunagem_3 <- xgb_wkf %>%
tune::tune_grid(
resamples = reamostragem,
grid = matriz,
control = control_grid(save_pred = TRUE, verbose = FALSE, allow_par = TRUE),
metrics = metric_set(roc_auc)
)
best_3 <- tunagem_3 %>% tune::select_best(metric = "roc_auc")
print(paste("Loss_reduction = ", best_3$loss_reduction))
# --------------------------------------------------------------------------- #
#### mtry e sample_size ####
xgb <- parsnip::boost_tree(
min_n = best_2$min_n,
mtry = tune(),
trees = best_1$trees,
tree_depth = best_2$tree_depth,
learn_rate = best_1$learn_rate,
loss_reduction = best_3$loss_reduction,
sample_size = tune()
) %>%
parsnip::set_mode("classification") %>%
parsnip::set_engine("xgboost")
# colocar no workflow
xgb_wkf <- workflows::workflow() %>%
workflows::add_model(xgb) %>%
workflows::add_recipe(base_recipe)
# matriz para tunagem
matriz <- tidyr::expand_grid(
sample_size = ss,
mtry = mt
)
# tunagem
tunagem_4 <- xgb_wkf %>%
tune::tune_grid(
resamples = reamostragem,
grid = matriz,
control = control_grid(save_pred = TRUE, verbose = FALSE, allow_par = TRUE),
metrics = metric_set(roc_auc)
)
# melhor hparametro
best_4 <- tunagem_4 %>% tune::select_best(metric = "roc_auc")
print(paste("Sample_size = ", best_4$sample_size))
print(paste("Mtry = ", best_4$mtry))
#### tree e learn_rate ####
xgb <- parsnip::boost_tree(
min_n = best_2$min_n,
mtry = best_4$mtry,
trees = tune(),
tree_depth = best_2$tree_depth,
learn_rate = tune(),
loss_reduction = best_3$loss_reduction,
sample_size = best_4$sample_size
) %>%
parsnip::set_mode("classification") %>%
parsnip::set_engine("xgboost")
# colocar no workflow
xgb_wkf <- workflows::workflow() %>%
workflows::add_model(xgb) %>%
workflows::add_recipe(base_recipe)
# matriz para tunagem
matriz <- tidyr::expand_grid(
learn_rate = c(0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3),
trees = c(100, 250, 500, 1000, 1500, 2000, 3000)
)
# tunagem
tunagem_5 <- xgb_wkf %>%
tune::tune_grid(
resamples = reamostragem,
grid = matriz,
control = control_grid(save_pred = TRUE, verbose = FALSE, allow_par = TRUE),
metrics = metric_set(roc_auc)
)
# melhor hparametro
best_5 <- tunagem_5 %>% tune::select_best(metric = "roc_auc")
#### atualizar wkf com modelo selecionado ####
#atualizar workflow
xgb_wkf <<- xgb_wkf %>%
tune::finalize_workflow(best_5)
print("Seu modelo está pronto para ser testado!")
print("Utilize o objeto xgb_wk para o teste do modelo")
}