-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathprobLV.cc
231 lines (164 loc) · 7.92 KB
/
probLV.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
#include <iostream>
#include "BargerPropagator.h"
#include "FullSMEPropagator.h"
#include "TFile.h"
#include "TH2D.h"
int main(int argc, char * argv[] )
{
double dcp_in = 0.;
double h_in = 1.0;
int v_in = 1.0;
if( argc >= 2 ) dcp_in = (double) atof( argv[1] );
if( argc >= 3 ) h_in = (double) atof( argv[2] );
if( argc >= 4 ) v_in = (int) atoi( argv[3] );
h_in = ( h_in > 0 ? 1.0 : -1.0 );
double PathLength, energy;
double e_start, e_end, e_step, path_start, path_end, path_step;
int i, j ;
//// Types of Averaging
int NBinsEnergy = 1000;
int PathLengthNbin = 2000;
// Pathlength Range [km]
double PathLengthEdge[PathLengthNbin+1];
path_start = 25.1 ;
path_end = 12767.0 ;
path_step = ( path_end - path_start)/double(PathLengthNbin);
// Energy Range [GeV]
double EnergyBins[NBinsEnergy+1];
e_start = 0.110000001;
e_end = 3000.;
e_step = log10(e_end/e_start)/double(NBinsEnergy);
/// Oscillation Parameters
bool kSquared = true ; // are we using sin^2(x) variables?
int kNuBar = 1 * v_in;
double DM2 = h_in * 2.5e-3;
double Theta23 = 0.50 ;
double Theta13 = 0.0219 ;
double dm2 = 7.6e-5 ;
double Theta12 = 0.302 ;
double delta = dcp_in * (3.1415926/180.0);
std::cout << "Using " << std::endl
<< " DM2 " << DM2 << std::endl
<< " Theta23 " << Theta23 << std::endl
<< " Theta13 " << Theta13 << std::endl
<< " dm2 " << dm2 << std::endl
<< " Theta12 " << Theta12 << std::endl
<< " delta " << delta << std::endl;
std::cout << " knubar " << kNuBar << std::endl;
std::cout << "From "
<< " [ " << e_start << " - " << e_end << " ] GeV " << endl;
// Methods to Compute Probability
FullSMEPropagator * SMEnu = new FullSMEPropagator( );
double Entry = e_start;
for(i=0; i<NBinsEnergy; i++ )
{
Entry = e_start*pow( 10.0 , double(i)*e_step );
EnergyBins[i] = Entry;
}
EnergyBins[NBinsEnergy] = EnergyBins[NBinsEnergy-1]*1.001;
PathLengthEdge[0]= path_start*0.9999;
for ( i=1; i<PathLengthNbin ; i++ )
PathLengthEdge[i] = PathLengthEdge[0] + double(i)*path_step;
PathLengthEdge[PathLengthNbin] = PathLengthEdge[PathLengthNbin-1]*1.001;
TH2D *NuEToNuE3f = new TH2D("NuEToNuE3f","3 Flavor P_{#nu_{e}#rightarrow#nu_{e}}",
NBinsEnergy -1 , EnergyBins, PathLengthNbin -1, PathLengthEdge);
TH2D *NuEToNuMu3f = new TH2D("NuEToNuMu3f","3 Flavor P_{#nu_{e}#rightarrow#nu_{#mu}}",
NBinsEnergy -1 , EnergyBins, PathLengthNbin -1, PathLengthEdge);
TH2D *NuEToNuTau3f = new TH2D("NuEToNuTau3f","3 Flavor P_{#nu_{e}#rightarrow#nu_{#tau}}",
NBinsEnergy -1 , EnergyBins, PathLengthNbin -1, PathLengthEdge);
TH2D *NuEToNuX3f = new TH2D("NuEToNuX3f","3 Flavor P_{#nu_{e}#rightarrow#nu_{x}}",
NBinsEnergy -1 , EnergyBins, PathLengthNbin -1, PathLengthEdge);
TH2D *NuMuToNuE3f = new TH2D("NuMuToNuE3f","3 Flavor P_{#nu_{#mu}#rightarrow#nu_{e}}",
NBinsEnergy -1 , EnergyBins, PathLengthNbin -1, PathLengthEdge);
TH2D *NuMuToNuMu3f = new TH2D("NuMuToNuMu3f","3 Flavor P_{#nu_{#mu}#rightarrow#nu_{#mu}}",
NBinsEnergy -1 , EnergyBins, PathLengthNbin -1, PathLengthEdge);
TH2D *NuMuToNuTau3f = new TH2D("NuMuToNuTau3f","3 Flavor P_{#nu_{#mu}#rightarrow#nu_{#tau}}",
NBinsEnergy -1 , EnergyBins, PathLengthNbin -1, PathLengthEdge);
TH2D *NuMuToNuX3f = new TH2D("NuMuToNuX3f","3 Flavor P_{#nu_{#mu}#rightarrow#nu_{x}}",
NBinsEnergy -1 , EnergyBins, PathLengthNbin -1, PathLengthEdge);
TH2D *NuTauToNuE3f = new TH2D("NuTauToNuE3f","3 Flavor P_{#nu_{#tau}#rightarrow#nu_{e}}",
NBinsEnergy -1 , EnergyBins, PathLengthNbin -1, PathLengthEdge);
TH2D *NuTauToNuMu3f = new TH2D("NuTauToNuMu3f","3 Flavor P_{#nu_{#tau}#rightarrow#nu_{#mu}}",
NBinsEnergy -1 , EnergyBins, PathLengthNbin -1, PathLengthEdge);
TH2D *NuTauToNuTau3f = new TH2D("NuTauToNuTau3f","3 Flavor P_{#nu_{#tau}#rightarrow#nu_{#tau}}",
NBinsEnergy -1 , EnergyBins, PathLengthNbin -1, PathLengthEdge);
TH2D *NuTauToNuX3f = new TH2D("NuTauToNuX3f","3 Flavor P_{#nu_{#tau}#rightarrow#nu_{x}}",
NBinsEnergy -1 , EnergyBins, PathLengthNbin -1, PathLengthEdge);
TH2D *NuMuToNuTau2f = new TH2D("NuMuToNuTau2f","2 Flavor P_{#nu_{#mu}#rightarrow#nu_{#tau}}",
NBinsEnergy -1 , EnergyBins, PathLengthNbin -1, PathLengthEdge);
for ( i = 0 ; i < 3 ; i ++ )
for ( j = 0 ; j < 3 ; j ++ )
{
SMEnu->SetLVMatrixEntry( "A" , i, j, 0.0, 0.0 );
SMEnu->SetLVMatrixEntry( "C" , i, j, 0.0, 0.0 );
}
// N.B. Matrix must be hermitian
// SMEnu->SetLVMatrixEntry( "C" , 0, 1, 7.5e-23, 0.0 );
// SMEnu->SetLVMatrixEntry( "C" , 1, 0, 7.5e-23, 0.0 );
// SMEnu->SetLVMatrixEntry( "C" , 0, 2, 7.5e-23, 0.0 );
// SMEnu->SetLVMatrixEntry( "C" , 2, 0, 7.5e-23, 0.0 );
SMEnu->SetLVMatrixEntry( "C" , 1, 2, 7.5e-23, 0.0 );
SMEnu->SetLVMatrixEntry( "C" , 2, 1, 7.5e-23, 0.0 );
// matix must be hermitian
// SMEnu->SetLVMatrixEntry( "A" , 0, 1, 1.0e-22, 0.0 );
// SMEnu->SetLVMatrixEntry( "A" , 1, 0, 1.0e-22, 0.0 );
// SMEnu->SetLVMatrixEntry( "A" , 0, 2, 1.0e-22, 0.0 );
// SMEnu->SetLVMatrixEntry( "A" , 2, 0, 1.0e-22, 0.0 );
// SMEnu->SetLVMatrixEntry( "A" , 1, 2, 1.0e-22, 0.0 );
// SMEnu->SetLVMatrixEntry( "A" , 2, 1, 1.0e-22, 0.0 );
SMEnu->PrintLVMatrices();
double total = 0.0;
// fill the probabilities
for ( i = 0 ; i <= NBinsEnergy ; i ++ )
{
energy = e_start*pow(10.0, double(i)*e_step);
for ( j = 0 ; j <= PathLengthNbin ; j++ )
{
PathLength = path_start + double(j)*path_step;
SMEnu->SetMNS( Theta12, Theta13, Theta23, dm2, DM2, delta , energy, kSquared, kNuBar );
// For propagation in the Earth
SMEnu->DefinePathFromLength( PathLength, 25.00 );
// For propagation in constant density matter, here 22 g/cm^3
//SMEnu->DefineLinearPath( PathLength, 22.0 );
SMEnu->SetHamiltonian( energy );
// routine is the same for propagation in the Earth and in
// constant density matter
SMEnu->propagate( kNuBar );
total = 0.0;
total += SMEnu->GetProb(1,1);
total += SMEnu->GetProb(1,2);
total += SMEnu->GetProb(1,3);
if( fabs( 1.00 - total ) > 1.0e-7 ) abort();
NuEToNuE3f ->Fill( energy, PathLength, SMEnu->GetProb(1,1) ) ;
NuEToNuMu3f ->Fill( energy, PathLength, SMEnu->GetProb(1,2) ) ;
NuEToNuTau3f ->Fill( energy, PathLength, SMEnu->GetProb(1,3) ) ;
NuEToNuX3f ->Fill( energy, PathLength, 1.0 - SMEnu->GetProb(1,1) ) ;
NuMuToNuE3f ->Fill( energy, PathLength, SMEnu->GetProb(2,1) ) ;
NuMuToNuMu3f ->Fill( energy, PathLength, SMEnu->GetProb(2,2) ) ;
NuMuToNuTau3f ->Fill( energy, PathLength, SMEnu->GetProb(2,3) ) ;
NuMuToNuX3f ->Fill( energy, PathLength, 1.0 - SMEnu->GetProb(2,2) ) ;
NuTauToNuE3f ->Fill( energy, PathLength, SMEnu->GetProb(3,1) ) ;
NuTauToNuMu3f ->Fill( energy, PathLength, SMEnu->GetProb(3,2) ) ;
NuTauToNuTau3f ->Fill( energy, PathLength, SMEnu->GetProb(3,3) ) ;
NuTauToNuX3f ->Fill( energy, PathLength, 1.0 - SMEnu->GetProb(3,3) ) ;
}// End of Cosine Z Looping //
} // End Energy Loop //
TFile *tmp = new TFile("fullSME_Prob.root", "recreate");
tmp->cd();
NuEToNuE3f ->Write();
NuEToNuMu3f ->Write();
NuEToNuTau3f ->Write();
NuEToNuX3f ->Write();
NuMuToNuE3f ->Write();
NuMuToNuMu3f ->Write();
NuMuToNuTau3f ->Write();
NuMuToNuX3f ->Write();
NuTauToNuE3f ->Write();
NuTauToNuMu3f ->Write();
NuTauToNuTau3f->Write();
NuTauToNuX3f ->Write();
NuMuToNuTau2f ->Write();
tmp->Close();
std::cout << std::endl<<"Done LV Cowboy!" << std::endl;
return 0;
}