-
Notifications
You must be signed in to change notification settings - Fork 0
/
rasu.py
executable file
·728 lines (613 loc) · 22.5 KB
/
rasu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
"""
Code for compressing and decompressing using Huffman compression.
"""
from assignments.a2.starter.nodes import HuffmanNode, ReadNode
# ====================
# Helper functions for manipulating bytes
def get_bit(byte, bit_num):
""" Return bit number bit_num from right in byte.
@param int byte: a given byte
@param int bit_num: a specific bit number within the byte
@rtype: int
>>> get_bit(0b00000101, 2)
1
>>> get_bit(0b00000101, 1)
0
"""
return (byte & (1 << bit_num)) >> bit_num
def byte_to_bits(byte):
""" Return the representation of a byte as a string of bits.
@param int byte: a given byte
@rtype: str
>>> byte_to_bits(14)
'00001110'
>>> byte_to_bits(1)
'00000001'
"""
return "".join([str(get_bit(byte, bit_num))
for bit_num in range(7, -1, -1)])
def bits_to_byte(bits):
""" Return int represented by bits, padded on right.
@param str bits: a string representation of some bits
@rtype: int
>>> bits_to_byte("00000101")
5
>>> bits_to_byte("101") == 0b10100000
True
"""
return sum([int(bits[pos]) << (7 - pos)
for pos in range(len(bits))])
# ====================
# Functions for compression
def make_freq_dict(text):
""" Return a dictionary that maps each byte in text to its frequency.
@param bytes text: a bytes object
@rtype: dict{int,int}
>>> d = make_freq_dict(bytes([65, 66, 67, 66]))
>>> d == {65: 1, 66: 2, 67: 1}
True
"""
result = {}
for i in text:
if i not in result:
result[i] = 1
else:
result[i] += 1
return result
def huffman_tree(freq_dict):
""" Return the root HuffmanNode of a Huffman tree corresponding
to frequency dictionary freq_dict.
Special Case: When the length of the dictionary is 1, the sibling of the \
leaf (having value as the key of the dictionary ) will have the dummy vaue\
'*' as arity of a Huffman Tree is always2
@param dict(int,int) freq_dict: a frequency dictionary
@rtype: HuffmanNode
>>> freq = {2: 6, 3: 4, 5: 5, 6: 6}
>>> t = huffman_tree({0: 1, 1: 1})
>>> t == HuffmanNode(None, HuffmanNode(0, None, None), \
HuffmanNode(1, None, None))
True
>>> freq1 = {1: 0}
>>> t = huffman_tree(freq1)
>>> t
HuffmanNode(None, HuffmanNode(1, None, None), HuffmanNode(*, None, None))
"""
if len(freq_dict) == 1:
for key in freq_dict:
node = HuffmanNode(None, HuffmanNode(key), HuffmanNode('*'))
return node
items = list(freq_dict.items())
items.sort(key=lambda x: x[1])
data = items
node_list = []
for i in data:
node = HuffmanNode(i[0])
node.number = i[1]
node_list.append(node)
while len(node_list) != 1:
# Keeps track of order of tuples
first, second = node_list.pop(0), node_list.pop(0)
if first.number <= second.number:
root = HuffmanNode(None, first, second)
else:
root = HuffmanNode(None, second, first)
root.number = first.number + second.number
node_list.append(root)
node_list.sort(key=lambda x: x.number)
return node_list[0]
def get_codes(tree):
""" Return a dict mapping symbols from tree rooted at HuffmanNode to codes.
@param HuffmanNode tree: a Huffman tree rooted at node 'tree'
@rtype: dict(int,str)
>>> tree = HuffmanNode(None, HuffmanNode(3), HuffmanNode(2))
>>> d = get_codes(tree)
>>> d == {3: "0", 2: "1"}
True
"""
data = pre_orderhf(tree, {})
if None in data:
del data[None]
return data
def pre_orderhf(t, result, symbol=''):
"""
Trial
"""
if t is not None:
# reslt = result.copy() if result else {}
# if t.symbol != None and t.is_leaf()
result[t.symbol] = symbol
# print(t.symbol, symbol)
pre_orderhf(t.left, result, symbol=symbol+'0')
# print(t.symbol, symbol)
pre_orderhf(t.right, result, symbol=symbol+'1')
# print(t.symbol, symbol)
return result
def number_nodes(tree):
""" Number internal nodes in tree according to postorder traversal;
start numbering at 0.
@param HuffmanNode tree: a Huffman tree rooted at node 'tree'
@rtype: NoneType
>>> left = HuffmanNode(None, HuffmanNode(3), HuffmanNode(2))
>>> right = HuffmanNode(None, HuffmanNode(9), HuffmanNode(10))
>>> tree = HuffmanNode(None, HuffmanNode(0, None, None), HuffmanNode(1, \
None, None))
>>> number_nodes(tree)
>>> tree.number
0
"""
postorder(tree, count=[0])
def postorder(tree, count):
"""
Helper function for number_nodes.
Traverses given tree in post-order.
@param HuffmaanNode tree: This tree
@param list count: List to keep track of node numbers
@rtype: NoneType
>>> left = HuffmanNode(None, HuffmanNode(3), HuffmanNode(2))
>>> right = HuffmanNode(None, HuffmanNode(9), HuffmanNode(10))
>>> tree = HuffmanNode(None, left, right)
>>> t = HuffmanNode(None, HuffmanNode(6, None, None), HuffmanNode(None, \
HuffmanNode(None, HuffmanNode(3, None, None), HuffmanNode(None, \
HuffmanNode(1, None, None), HuffmanNode(2, None, None))), \
HuffmanNode(None, HuffmanNode(4, None,\
None), HuffmanNode(5, None, None))))
>>> t1 = HuffmanNode(None, HuffmanNode(0, None, None), HuffmanNode(1, None,\
None))
>>> postorder(t1, [0])
>>> t1.number
0
"""
if tree is not None:
postorder(tree.left, count)
postorder(tree.right, count)
if tree.symbol is None:
tree.number = count[-1]
count.append(count[-1] + 1)
def avg_length(tree, freq_dict):
""" Return the number of bits per symbol required to compress text
made of the symbols and frequencies in freq_dict, using the Huffman tree.
@param HuffmanNode tree: a Huffman tree rooted at node 'tree'
@param dict(int,int) freq_dict: frequency dictionary
@rtype: float
>>> freq = {3: 2, 2: 7, 9: 1}
>>> left = HuffmanNode(None, HuffmanNode(3), HuffmanNode(2))
>>> right = HuffmanNode(9)
>>> tree = HuffmanNode(None, left, right)
>>> avg_length(tree, freq)
1.9
"""
all_codes = get_codes(tree)
sum_freq = 0
for key in freq_dict:
sum_freq += freq_dict[key]
assert sum_freq != 0
total_chars = 0
if len(all_codes) > 0:
# To check if dictionary is empty
for key in all_codes:
# Multipliyng length of codes by \
# frequency to get toal number of chars
if key in all_codes and key in freq_dict:
total_chars += len(all_codes[key]) * freq_dict[key]
return total_chars/sum_freq
else:
return 0.0
def generate_compressed(text, codes):
""" Return compressed form of text, using mapping in codes for each symbol.
@param bytes text: a bytes object
@param dict(int,str) codes: mappings from symbols to codes
@rtype: bytes
>>> d = {0: "0", 1: "10", 2: "11"}
>>> text = bytes([1, 2, 1, 0])
>>> result = generate_compressed(text, d)
>>> [byte_to_bits(byte) for byte in result]
['10111000']
>>> text = bytes([1, 2, 1, 0, 2])
>>> result = generate_compressed(text, d)
>>> [byte_to_bits(byte) for byte in result]
['10111001', '10000000']
>>> text = bytes([65, 66, 67, 66])
>>> codes = {65: '10', 66: '0', 67: '11'}
>>> generate_compressed(text, codes)
b'\x98'
"""
byte_list = []
codes_ = ''
for item in text:
codes_ += codes[item]
remainder = len(codes_) - (len(codes_) // 8) * 8
for i in range(len(codes_) // 8):
byte_list.append(codes_[8 * i: 8 * i + 8])
if len(codes_) % 8 != 0:
remainder_code = codes_[len(codes_) // 8 * 8:]
remainder_code += '0' * (8 - remainder)
byte_list.append(remainder_code)
list1 = []
for item in byte_list:
list1.append(bits_to_byte(item))
if len(list1) > 0:
ibyte = bytes([list1[0]])
for i in range(1, len(list1)):
ibyte += bytes([list1[i]])
return ibyte
else:
return bytes([])
def tree_to_bytes(tree):
""" Return a bytes representation of the tree rooted at tree.
@param HuffmanNode tree: a Huffman tree rooted at node 'tree'
@rtype: bytes
The representation should be based on the postorder traversal of tree
internal nodes, starting from 0.
Precondition: tree has its nodes numbered.
>>> tree = HuffmanNode(None, HuffmanNode(3), HuffmanNode(2))
>>> number_nodes(tree)
>>> list(tree_to_bytes(tree))
[0, 3, 0, 2]
>>> left = HuffmanNode(None, HuffmanNode(3), HuffmanNode(2))
>>> right = HuffmanNode(5)
>>> tree = HuffmanNode(None, left, right)
>>> number_nodes(tree)
>>> list(tree_to_bytes(tree))
[0, 3, 0, 2, 1, 0, 0, 5]
"""
return helper(tree, ibytes=[])
def helper(tree, ibytes):
"""
Helper function for function tree_to_bytes.
@param HuffmanNode tree: This tree
@param list ibytes: List to store numbers
@rtype: bytes
>>> tree = HuffmanNode(None, HuffmanNode(3), HuffmanNode(2))
>>> number_nodes(tree)
>>> list(helper(tree, ibytes = []))
[0, 3, 0, 2]
>>> left = HuffmanNode(None, HuffmanNode(3), HuffmanNode(2))
>>> right = HuffmanNode(5)
>>> tree = HuffmanNode(None, left, right)
>>> number_nodes(tree)
>>> list(helper(tree, ibytes = []))
[0, 3, 0, 2, 1, 0, 0, 5]
"""
if tree is not None:
helper(tree.left, ibytes)
helper(tree.right, ibytes)
if tree.symbol is None:
if tree.left.is_leaf():
ibytes.append(0)
if not tree.left.is_leaf():
ibytes.append(1)
if tree.left.is_leaf():
ibytes.append(tree.left.symbol)
if not tree.left.is_leaf():
ibytes.append(tree.left.number)
if tree.right.is_leaf():
ibytes.append(0)
if not tree.right.is_leaf():
ibytes.append(1)
if tree.right.is_leaf():
ibytes.append(tree.right.symbol)
if not tree.right.is_leaf():
ibytes.append(tree.right.number)
return bytes(ibytes)
def num_nodes_to_bytes(tree):
""" Return number of nodes required to represent tree (the root of a
numbered Huffman tree).
@param HuffmanNode tree: a Huffman tree rooted at node 'tree'
@rtype: bytes
"""
return bytes([tree.number + 1])
def size_to_bytes(size):
""" Return the size as a bytes object.
@param int size: a 32-bit integer that we want to convert to bytes
@rtype: bytes
>>> list(size_to_bytes(300))
[44, 1, 0, 0]
"""
# little-endian representation of 32-bit (4-byte)
# int size
return size.to_bytes(4, "little")
def compress(in_file, out_file):
""" Compress contents of in_file and store results in out_file.
@param str in_file: input file whose contents we want to compress
@param str out_file: output file, where we store our compressed result
@rtype: NoneType
"""
with open(in_file, "rb") as f1:
text = f1.read()
freq = make_freq_dict(text)
tree = huffman_tree(freq)
codes = get_codes(tree)
number_nodes(tree)
print("Bits per symbol:", avg_length(tree, freq))
result = (num_nodes_to_bytes(tree) + tree_to_bytes(tree) +
size_to_bytes(len(text)))
result += generate_compressed(text, codes)
with open(out_file, "wb") as f2:
f2.write(result)
# ====================
# Functions for decompression
def generate_tree_general(node_lst, root_index):
""" Return the root of the Huffman tree corresponding
to node_lst[root_index].
The function assumes nothing about the order of the nodes in the list.
@param list[ReadNode] node_lst: a list of ReadNode objects
@param int root_index: index in the node list
@rtype: HuffmanNode
>>> lst = [ReadNode(0, 5, 0, 7), ReadNode(0, 10, 0, 12), \
ReadNode(1, 1, 1, 0)]
>>> generate_tree_general(lst, 2)
HuffmanNode(None, HuffmanNode(None, HuffmanNode(10, None, None), \
HuffmanNode(12, None, None)), HuffmanNode(None, HuffmanNode(5, None, None),\
HuffmanNode(7, None, None)))
>>> lst2 = [ReadNode(1, 1, 1, 3), ReadNode(0, 10, 1, 2), \
ReadNode(0, 5, 0, 4), ReadNode(0, 15, 0, 7)]
>>> generate_tree_general(lst2, 0)
HuffmanNode(None, HuffmanNode(None, HuffmanNode(10, None, None), \
HuffmanNode(None, HuffmanNode(5, None, None), HuffmanNode(4, None, None))),\
HuffmanNode(None, HuffmanNode(15, None, None), HuffmanNode(7, None, None)))
>>> lst = [ReadNode(1, 1, 1, 2), ReadNode(0, 10, 0, 12), \
ReadNode(0, 5, 0, 7)]
>>> generate_tree_general(lst, 0)
HuffmanNode(None, HuffmanNode(None, HuffmanNode(10, None, None), \
HuffmanNode(12, None, None)), HuffmanNode(None, HuffmanNode(5, None, None),\
HuffmanNode(7, None, None)))
>>> lst3 = [ReadNode(0, 1, 0, 2)]
>>> generate_tree_general(lst3, 0)
HuffmanNode(None, HuffmanNode(1, None, None), HuffmanNode(2, None, None))
>>> lst4 = [ReadNode(1, 1, 1, 3), ReadNode(0, 3, 1, 2), \
ReadNode(0, 7, 0, 8), ReadNode(0, 5, 0, 6)]
>>> generate_tree_general(lst4, 0)
HuffmanNode(None, HuffmanNode(None, HuffmanNode(3, None, None), \
HuffmanNode(None, HuffmanNode(7, None, None), HuffmanNode(8, None, None))),\
HuffmanNode(None, HuffmanNode(5, None, None), HuffmanNode(6, None, None)))
>>> lst5 = [ReadNode(1, 3, 1, 1), ReadNode(1, 2, 0, 3), \
ReadNode(0, 7, 0, 8), ReadNode(0, 5, 0, 6)]
>>> generate_tree_general(lst5, 0)
HuffmanNode(None, HuffmanNode(None, HuffmanNode(5, None, None), \
HuffmanNode(6, None, None)), HuffmanNode(None, HuffmanNode(None, \
HuffmanNode(7, None, None), HuffmanNode(8, None, None)), \
HuffmanNode(3, None, None)))
>>> lst6 = [ReadNode(1, 1, 1, 4), ReadNode(1, 2, 1, 3), \
ReadNode(0, 1, 0, 2), ReadNode(0, 3, 0, 4), ReadNode(0, 5, 0, 6)]
>>> generate_tree_general(lst6, 0)
HuffmanNode(None, HuffmanNode(None, HuffmanNode(None, \
HuffmanNode(1, None, None), HuffmanNode(2, None, None)), \
HuffmanNode(None, HuffmanNode(3, None, None), HuffmanNode(4, None, None))),\
HuffmanNode(None, HuffmanNode(5, None, None), HuffmanNode(6, None, None)))
"""
return function1(HuffmanNode(None, HuffmanNode(None), HuffmanNode(None)),
node_lst, node_lst[root_index])
def function1(node, node_lst, root):
"""
jj
"""
if node.left is None:
node.left = HuffmanNode(None)
if root.l_type == 0:
# print('reached left 0', node)
node.left = HuffmanNode(root.l_data)
# print('hua')
if node.right is None:
node.right = HuffmanNode(None)
if root.r_type == 0:
node.right = HuffmanNode(root.r_data)
# print('reached right 0', node)
# print('reached else', node)
if root.l_type == 1:
node_left = node_lst[root.l_data]
function1(node.left, node_lst, node_left)
if root.r_type == 1:
node_right = node_lst[root.r_data]
function1(node.right, node_lst, node_right)
return node
def generate_tree_postorder(node_lst, root_index):
""" Return the root of the Huffman tree corresponding
to node_lst[root_index].
The function assumes that the list represents a tree in postorder.
@param list[ReadNode] node_lst: a list of ReadNode objects
@param int root_index: index in the node list
@rtype: HuffmanNode
>>> lst = [ReadNode(0, 5, 0, 7), ReadNode(0, 10, 0, 12), \
ReadNode(1, 0, 1, 0)]
>>> generate_tree_postorder(lst, 2)
HuffmanNode(None, HuffmanNode(None, HuffmanNode(5, None, None), \
HuffmanNode(7, None, None)), HuffmanNode(None, HuffmanNode(10, None, None),\
HuffmanNode(12, None, None)))
>>> lst1 = [ReadNode(0,1,0,2),ReadNode(0,3,0,4), ReadNode(1,8,1,9)]
>>> generate_tree_postorder(lst1, 2)
HuffmanNode(None, HuffmanNode(None, HuffmanNode(1, None, None), \
HuffmanNode(2, None, None)), HuffmanNode(None, HuffmanNode(3, None, None),\
HuffmanNode(4, None, None)))
>>> lst2 = [ReadNode(0,1,0,2),ReadNode(1,5,0,3), \
ReadNode(0,4,0,5),ReadNode(1,7,1,8)]
>>> generate_tree_postorder(lst2, 3)
True
"""
return helper2(node_lst, node_lst[root_index],
HuffmanNode(None, HuffmanNode(None), HuffmanNode(None)))
def helper2(lst, root, node):
"""
helper for postorder
first right, then left!
"""
if root.r_type == 0:
# for leaf
node.right = HuffmanNode(root.r_data)
else:
if len(lst) >= 2:
helper2(lst, lst[-2], node.right)
if root.l_type == 0:
node.left = HuffmanNode(root.l_data)
lst.remove(root)
else:
if len(lst) >= 2:
# if node.left is None and node.right is not None:
# node.left = HuffmanNode(None)
helper2(lst, lst[-2], node.left)
return node
#
# lst2 = [ReadNode(0,1,0,2),ReadNode(1,5,0,3), \
# ReadNode(0,4,0,5),ReadNode(1,7,1,8)]
# lst = [ReadNode(0,1,0,2),ReadNode(0,3,0,4), ReadNode(1,8,1,9)]
# generate_tree_postorder(lst, 2)
def generate_uncompressed(tree, text, size):
""" Use Huffman tree to decompress size bytes from text.
@param HuffmanNode tree: a HuffmanNode tree rooted at 'tree'
@param bytes text: text to decompress
@param int size: how many bytes to decompress from text.
@rtype: bytes
>>> t = HuffmanNode(None, HuffmanNode(None, HuffmanNode(3), \
HuffmanNode(None, HuffmanNode(1), HuffmanNode(4))), \
HuffmanNode(None, HuffmanNode(2), HuffmanNode(5)))
>>> text = bytes([216, 0])
>>> size = 4
>>> a = bytes([5, 4, 3, 3])
>>> generate_uncompressed(t, text, size) == a
True
"""
bits = []
for byte in text:
bits.append(byte_to_bits(byte))
evaluate = ''
for i in bits:
evaluate += i
codes = get_codes(tree)
inv_code = {v: k for k, v in codes.items()}
i = 0
j = 1
result = []
to_find = evaluate[i:j]
while len(result) < size:
if to_find in inv_code:
result.append(inv_code[to_find])
j = j + 1
i = j - 1
to_find = evaluate[i: j]
else:
i = i
j = j + 1
to_find = evaluate[i: j]
return bytes(result)
#
# tree = HuffmanNode(None, HuffmanNode(66, None, None), \
# HuffmanNode(None, HuffmanNode(65, None, None), HuffmanNode(67, None, None)))
# text = b'\x98'
# print(generate_uncompressed(tree, text, 4))
def bytes_to_nodes(buf):
""" Return a list of ReadNodes corresponding to the bytes in buf.
@param bytes buf: a bytes object
@rtype: list[ReadNode]
>>> bytes_to_nodes(bytes([0, 1, 0, 2]))
[ReadNode(0, 1, 0, 2)]
"""
lst = []
for i in range(0, len(buf), 4):
l_type = buf[i]
l_data = buf[i+1]
r_type = buf[i+2]
r_data = buf[i+3]
lst.append(ReadNode(l_type, l_data, r_type, r_data))
return lst
def bytes_to_size(buf):
""" Return the size corresponding to the
given 4-byte little-endian representation.
@param bytes buf: a bytes object
@rtype: int
>>> bytes_to_size(bytes([44, 1, 0, 0]))
300
"""
return int.from_bytes(buf, "little")
def uncompress(in_file, out_file):
""" Uncompress contents of in_file and store results in out_file.
@param str in_file: input file to uncompress
@param str out_file: output file that will hold the uncompressed results
@rtype: NoneType
"""
with open(in_file, "rb") as f:
num_nodes = f.read(1)[0]
buf = f.read(num_nodes * 4)
node_lst = bytes_to_nodes(buf)
# use generate_tree_general or generate_tree_postorder here
tree = generate_tree_general(node_lst, num_nodes - 1)
size = bytes_to_size(f.read(4))
with open(out_file, "wb") as g:
text = f.read()
g.write(generate_uncompressed(tree, text, size))
# ====================
# Other functions
def improve_tree(tree, freq_dict):
""" Improve the tree as much as possible, without changing its shape,
by swapping nodes. The improvements are with respect to freq_dict.
@param HuffmanNode tree: Huffman tree rooted at 'tree'
@param dict(int,int) freq_dict: frequency dictionary
@rtype: NoneType
>>> left = HuffmanNode(None, HuffmanNode(99), HuffmanNode(100))
>>> right = HuffmanNode(None, HuffmanNode(101), \
HuffmanNode(None, HuffmanNode(97), HuffmanNode(98)))
>>> tree = HuffmanNode(None, left, right)
>>> freq = {98: 23, 97: 26, 99: 20, 100: 16, 101: 15}
>>> improve_tree(tree, freq)
>>> avg_length(tree, freq)
2.31
>>> freq2 = {100: 15, 101: 17, 98: 20, 103: 21, 105: 23}
>>> tree2 = HuffmanNode(None, HuffmanNode(None, HuffmanNode(100), \
HuffmanNode(None, HuffmanNode(98), HuffmanNode(105))), HuffmanNode(None, \
HuffmanNode(103), HuffmanNode(101)))
>>> avg_length(tree2, freq2)
True
>>> improve_tree(tree2, freq2)
>>> tree2
True
>>> avg_length(tree2, freq2)
True
"""
items = list(freq_dict.items())
items.sort(key=lambda x: x[1], reverse=True)
data = items
compare_list = []
for i in data:
compare_list.append(i[0])
traverse(tree, compare_list)
def traverse(rootnode, result):
"""
level order
>>> left = HuffmanNode(None, HuffmanNode(99), HuffmanNode(100))
>>> right = HuffmanNode(None, HuffmanNode(101), \
HuffmanNode(None, HuffmanNode(97), HuffmanNode(98)))
>>> tree = HuffmanNode(None, left, right)
>>> traverse(tree, result)
True
"""
thislevel = [rootnode]
while thislevel:
nextlevel = []
for n in thislevel:
if n.symbol is not None:
if len(result) > 0:
n.symbol = result[0]
result.remove(result[0])
if n.left:
nextlevel.append(n.left)
if n.right:
nextlevel.append(n.right)
thislevel = nextlevel
if __name__ == "__main__":
import python_ta
python_ta.check_all(config="huffman_pyta.txt")
# TODO: Uncomment these when you have implemented all the functions
import doctest
doctest.testmod()
import time
mode = input("Press c to compress or u to uncompress: ")
if mode == "c":
fname = input("File to compress: ")
start = time.time()
compress(fname, fname + ".huf")
print("compressed {} in {} seconds."
.format(fname, time.time() - start))
elif mode == "u":
fname = input("File to uncompress: ")
start = time.time()
uncompress(fname, fname + ".orig")
print("uncompressed {} in {} seconds."
.format(fname, time.time() - start))