-
Notifications
You must be signed in to change notification settings - Fork 4
/
Books.cpp
123 lines (96 loc) · 2.79 KB
/
Books.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#include<bits/stdc++.h>
using namespace std ;
typedef double D ;
typedef long long ll ;
typedef long double ld ;
typedef unsigned int ui ;
typedef unsigned long long ull ;
# define F first
# define S second
# define R return
# define C continue
# define pb push_back
# define pf push_front
# define mp make_pair
# define all(v) (v).begin() , (v).end()
# define allrev(v) (v).rbegin() , (v).rend()
# define allcomp(v) v.begin() , v.end() , comp
# define allrevcomp(v) v.rbegin() , v.rend() , comp
# define vi vector <int>
# define vb vector <bool>
# define vll vector <ll>
# define vs vector <string>
# define vvi vector < vector < int > >
# define vvb vector < vector < bool > >
# define vvc vector < vector < char > >
# define vvll vector < vector < ll > >
# define vvd vector < vector < D > >
# define vvld vector < vector < ld > >
# define pii pair < int , int >
# define pll pair < ll , ll >
# define pld pair < ld , ld >
# define pDD pair < D , D >
# define vpld vector < pld >
# define vpii vector < pii >
# define vpll vector < pll >
# define vpDD vector < pDD >
# define vvpii vector < vector < pii > >
# define Fi(i,L,R) for (int i = L ; i <= R ; i++)
# define Fd(i,R,L) for (int i = R ; i >= L ; i--)
# define fast ios_base :: sync_with_stdio (false) ; cin.tie(0) ; cout.tie(0)
# define dist(a,b,p,q) sqrt((p-a)*(p-a) + (q-b)*(q-b))
const ld PI = 3.1415926535897932384626 ;
const ll MOD = 1e9 + 7 ;
////////////////////////////////////////////////////////////////////////////////////////////////////////////////
vi v ;
ll n , t , ans = 0 ;
bool check (ll mid)
{
ll sum = 0 ;
Fi(i , 0 , mid-1)
sum += v[i] ;
if (sum <= t)
return true ;
Fi(i , mid , n-1)
{
sum += v[i] ;
sum -= v[i-mid] ; // sliding-window... right element enter window. left element leaves window.
if (sum <= t)
return true ;
}
return false ;
}
void solve ()
{
cin >> n >> t ;
v.resize(n) ;
Fi(i , 0 , n-1)
cin >> v[i] ;
// i will go for binary search to find the maximum length array with sum atmost = t ;
ll lo = 0 , hi = n ;
while(lo <= hi)
{
ll mid = (lo + hi)/2 ;
if (check(mid)) // it means that sub-array with length atleast equal to value of mid exists that matches our condition
{
ans = max(ans , mid) ;
lo = mid + 1 ; // now will check if sub-array with greater length exists or not
}
else
{
hi = mid - 1 ; // if it doesnt exist then we will check for intermediate valude of prev lo and new hi . in short : binary search
}
}
cout << ans ;
}
int main()
{
//freopen ("input.txt","r",stdin) ;
//freopen ("output.txt","w",stdout) ;
fast ;
int t = 1 ;
// cin>>t ;
while (t--)
solve () ;
return 0 ;
}