This repository has been archived by the owner on Jun 20, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathE_Pavan.c
167 lines (149 loc) · 3.27 KB
/
E_Pavan.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#include <stdio.h>
#include <stdlib.h>
#define MAX 100000
int n;
//Bucket Structure containing the (x,y) values in seperate 1D arrays and their respective count.
struct Bucket
{
double *Bx;
double *By;
int cx;
int cy;
int boole;
};
//Intializaing a bucket
struct Bucket* init_bucket()
{
struct Bucket* new = malloc(sizeof(struct Bucket));
new->Bx = (double*)malloc(n*sizeof(double));
new->By = (double*)malloc(n*sizeof(double));
new->cx=0;
new->cy=0;
new->boole=1;
return new;
}
//Adding en element to a bucket.
void add_element(struct Bucket** bucket, int x, double val)
{
int a = (int)(val);
if(bucket[a]==NULL)
{
bucket[a] = init_bucket();
}
else if(bucket[a]->boole!=1)
{
bucket[a] = init_bucket();
}
int i;
if(x==1)
{
i = bucket[a]->cx;
(bucket[a]->Bx)[i] = val;
bucket[a]->cx++;
}
else
{
i = bucket[a]->cy;
(bucket[a]->By)[i] = val;
bucket[a]->cy++;
}
//printf("Counts of Bucket with range (%d, %d) : \n\tcx and cy : %d %d\n", a, a+1, bucket[a]->cx, bucket[a]->cy);
}
//Looping through an array of all buckets (that is through all the ranges) and setting the count for the bucket in which 'a' is present.
//x value shows if we are working with 'x' values (x=1) or 'y' vlaues (x=0)
int bucket_count(struct Bucket** bucket, int n1, double a, int x)
{
double *arr;
int size;
for(int j=0; j<n1; j++)
{
if(bucket[j]!=NULL && bucket[j]->boole==1)
{
arr = x==1? bucket[j]->Bx : bucket[j]->By;
size = x==1? bucket[j]->cx : bucket[j]->cy;
size = size>n? n:size;
for(int i=0; i<size; i++)
{
if(arr[i]==a)
{
return x==1? bucket[j]->cx : bucket[j]->cy;
}
}
}
}
}
//compare function for quicksort
int cmpfunc (const void * a, const void * b)
{
return ( *(int*)a - *(int*)b );
}
//Sorting the array of normality scores and printing the indexes of 'k' element with the least values.
void print(int* arr, int k)
{
int n1[MAX] = {0};
for(int i=0; i<n; i++)
{
n1[i] = arr[i];
}
int l = n;
qsort(arr, l, sizeof(int), cmpfunc);
int count =0;
for(int i=0; i<k; i++)
{
for(int j=0; j<n; j++)
{
if(arr[i]==n1[j])
{
if(i!=k-1)
{
printf("%d ", j);
count++;
}
else
{
printf("%d", j);
count++;
}
if(count>=k)
{
return;
}
}
}
}
}
int main()
{
int c, d, k;
scanf("%d %d %d %d", &n, &c, &d, &k);
//Using a bucket Data Sturcture to store the values and counts of each range.
struct Bucket** buc = c>=d? malloc(c*sizeof(struct Bucket)) : malloc(d*sizeof(struct Bucket));
//Taking input of each points and adding them to their respective buckets.
double* x = (double*)malloc(n*sizeof(double));
double* y = (double*)malloc(n*sizeof(double));
for(int i=0; i<n; i++)
{
scanf("%lf %lf", &x[i], &y[i]);
add_element(buc, 1, x[i]);
add_element(buc, 0, y[i]);
}
//Calculating the normality scores.
int size = c>=d? c:d;
int* n1= (int*)malloc(n*sizeof(int));
for(int i=0; i<n; i++)
{
n1[i] = bucket_count(buc, size, x[i], 1) * bucket_count(buc, size, y[i], 0);
//printf("Normality Score of (%lf, %lf) : %d\n", x[i], y[i], n1[i]);
}
//Sorting the array of normality scores and printing the indexes of 'k' element with the least values.
print(n1, k);
return 0;
}
//Given smaple test case in the lab sheet.
/*
4 10 10 2
3.1 3.2
3.3 7.7
9.1 3.2
0.1 2.9
*/