Course repository link
conda create --name exp-tracking-env python=3.9
conda activate exp-tracking-env
cd 02-experiment-tracking
pip install -r requirements.txt
mlflow ui --backend-store-uri sqlite:///mlflow.sqlite
git clone https://github.com/mage-ai/mlops.git
cd mlops
./scripts/start.sh
Open http://localhost:6789 in your browser.
pipenv shell
pipenv sync # or pipenv sync --dev
gunicorn --bind=0.0.0.0:9696 predict:app
python test.py
docker build -t ride-duration-prediction-service:v1 .
docker run -it --rm -p 9696:9696 ride-duration-prediction-service:v1
cd /workspaces/mlops-zoomcamp/05-monitoring/taxi_monitoring
conda activate model_monitoring
docker compose up --build
Grafana: http://127.0.0.1:3000/login Adminer: http://127.0.0.1:8080/index.php