-
Notifications
You must be signed in to change notification settings - Fork 0
/
pedestrianmodel.py
635 lines (541 loc) · 30.2 KB
/
pedestrianmodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
import numpy as np
import scipy.spatial as spatial
import basemodel as bm
class Pedestrian(bm.AbstractBwsAbpModel):
"""
This class is an implementation of a pedestrian model greatly inspired by [1]. In addition to the model described
in this paper, we added a target and stop mechanism: each particle has a list of possible targets (another particle
or a particular region of the box). Each target has a given probability to be chosen. Once the target is defined,
the particle moves until it reaches the target, stops, stays a given amount of time, then chooses a new target.
[1]: How simple rules determine pedestrian behavior and crowd disasters.
M Moussaïd, D Helbing, G Theraulaz - Proceedings of the National Academy of Sciences, 2011
:param v: Speed of the particle
:type v: float
:param n_particles: Number of particles in the box
:type n_particles: int
:param angle_range: np.pi/3 by default. Range of angles where a particle 'sees' information.
:type angle_range: float
:param dt: 20 by default. Increment of time for each step.
:type dt: float, optional
:param radius: 1 by default. radius of the particles. It as constant for all the particles
:type radius: float, optional
:param contact_radius: distance from which we consider a contact between two particles
:type contact_radius: float
:param surface: 10000 by default. Surface of the box. Box is a square, hence length_side = square_root(surface)
:type surface: float, optional
:param n_steps: 2000 by default. Number of steps that we consider for the total movement of the particles.
:type n_steps: int, optional
"""
def __init__(self, v, n_particles, angle_range=np.pi / 3, dt=20, radius=1, contact_radius=2.5,
surface=10000, n_steps=2000):
super().__init__(v, n_particles, dt, radius, contact_radius, surface, n_steps, False, False)
self.angle_range = angle_range
self.angle_array = np.arctan2(self.velocities_array[:, 1], self.velocities_array[:, 0])
self.optimum_angle_array = np.zeros(n_particles)
self.d_max = 10 * self.radius
self.velocity_norm = self.v * np.ones((n_particles, 1))
self.tau = self.d_max / self.v
self.wall_array = np.array([[1, 0, 0], [1, 0, -self.side], [0, 1, 0], [0, 1, -self.side]])
self.weight_array = self.initial_weight('power')
self.target_array = np.arange(self.n_particles)
self.target_array[self.target_array] = self.target(self.target_array)
self.desired_position = self.position_array[self.target_array]
self.position_array[0] = [10, 10]
self.position_array[1] = [90, 90]
self.previous_contact = np.arange(n_particles)
self.real_pairs = np.empty((0, 2))
self.pairs_iteration = np.empty((0, 3), dtype=int)
def get_target(self):
"""
This function returns the target of each particle
:return: array of targets. Shape is (n_particles, 1)
:rtype: np.array
"""
return self.target_array
def wall_body_collision(self, i, w, dist_iw, k=0.05):
"""
This updates the velocity of a particle that is in contact with a wall w.
:param i: index of particle i
:type i: int
:param w: wall w, which is describe by two coefficient: [a, b]. Shape is (2, )
:type w: np.array
:param dist_iw: distance between i and wall w
:type dist_iw: float
:param k: force constant
:type k: float
"""
force_iw = k * (self.radius - dist_iw)
n_iw = w / np.linalg.norm(w)
vi_t = self.velocities_array[i]
vi_t_dt = self.dt * force_iw * n_iw / (320 * self.radius) + vi_t
vi_norm = np.linalg.norm(vi_t_dt)
if vi_norm != self.v:
vi_t_dt = vi_t_dt * self.v / vi_norm
vi_norm = self.v
self.velocities_array[i] = vi_t_dt
self.velocity_norm[i] = vi_norm
self.angle_array[i] = np.arctan2(self.velocities_array[i, 1], self.velocities_array[i, 0])
def distance_to_wall(self):
"""
This function calculates the distance to every walls in the simulation.
:return: distance to every wall. Shape = (n_particles, n_walls)
:rtype: np.array
"""
x, y = self.position_array[:, 0].reshape(-1, 1), self.position_array[:, 1].reshape(-1, 1)
a, b, c = self.wall_array[:, 0], self.wall_array[:, 1], self.wall_array[:, 2]
n = self.n_particles
a, b, c = np.tile(a, (n, 1)), np.tile(b, (n, 1)), np.tile(c, (n, 1))
numerator = np.abs(a * x + b * y + c)
denominator = np.sqrt(a ** 2 + b ** 2)
distance_w_array = numerator / denominator
return distance_w_array
def wall_collision_horizon(self, angle, i):
"""
This function calculates the distance to collision between the particle i and every other possible wall in
the box for a given angle. Particle i looks at all angles between -self.range and + self.range at a maximum
distance of self.d_max. If the collision distance is superior to self.d_max, then self.d_max si returned.
:param angle: angle particle i looks at.
:type angle: float
:param i: particle of index i
:type i: int
:return: distance to collision
:rtype: float
"""
a, b, c = self.wall_array[:, 0], self.wall_array[:, 1], self.wall_array[:, 2]
numerator1 = self.radius * np.sqrt(a ** 2 + b ** 2)
numerator2 = a * self.position_array[i, 0] + b * self.position_array[i, 1] + c
real_angle = self.angle_array[i] + angle[0]
velocity_i_norm = self.velocity_norm[i]
vx, vy = velocity_i_norm * np.cos(real_angle), velocity_i_norm * np.sin(real_angle)
denominator = a * vx + b * vy
denominator = np.where(denominator == 0, np.nan, denominator)
delta_t1 = (numerator1 - numerator2) / denominator
delta_t2 = (-numerator1 - numerator2) / denominator
delta_t = np.stack((delta_t1, delta_t2), axis=-1)
delta_t = np.where(delta_t < 0, self.d_max / velocity_i_norm, delta_t)
if np.all(delta_t is np.nan):
out = self.d_max
else:
delta_t_min = np.nanmin(delta_t, axis=-1)
distance_array = velocity_i_norm * delta_t_min
distance_array = np.where(distance_array > self.d_max, self.d_max, distance_array)
distance_array = np.where(distance_array is np.nan, self.d_max, distance_array)
out = np.nanmin(distance_array)
return out
def particle_collision_horizon(self, angle, i, possible_i_index):
"""
This function calculates the distance to collision between the particle i and every other possible particle in
the box for a given angle. Particle i looks at all angles between -self.range and + self.range at a maximum
distance of self.d_max. If the collision distance, is superior to self.d_max then self.d_max si returned.
:param angle: angle particle i looks at.
:type angle: float
:param i: particle of index i
:type i: int
:param possible_i_index: all the particles that can be possibly in contact with i
:type possible_i_index: np.array
:return: distance to collision
:rtype: float
"""
velocity_i_norm, possible_velocities = self.velocity_norm[i], self.velocities_array[possible_i_index]
real_angle = self.angle_array[i] + angle[0]
vx, vy = velocity_i_norm * np.cos(real_angle), velocity_i_norm * np.sin(real_angle)
possible_velocities_x, possible_velocities_y = possible_velocities[:, 0], possible_velocities[:, 1]
v_diff_x, v_diff_y = possible_velocities_x - vx, possible_velocities_y - vy
position_i, possible_positions = self.position_array[i], self.position_array[possible_i_index]
x, y = position_i[0], position_i[1]
possible_positions_x, possible_positions_y = possible_positions[:, 0], possible_positions[:, 1]
pos_diff_x, pos_diff_y = possible_positions_x - x, possible_positions_y - y
a = v_diff_x ** 2 + v_diff_y ** 2
b = 2 * (pos_diff_x * v_diff_x + pos_diff_y * v_diff_y)
c = pos_diff_x ** 2 + pos_diff_y ** 2 - (2 * self.radius) ** 2
delta = b ** 2 - 4 * a * c
dist = self.d_max * np.ones(delta.size)
delta = np.where(delta < 0, np.nan, delta)
b_prime = np.where(b == 0, np.nan, b)
t_a = - c / b_prime
dist = np.where(np.logical_and(a == 0, t_a > 0), velocity_i_norm * t_a, dist)
a = np.where(a == 0, np.nan, a)
t0 = - b / (2 * a)
t_plus, t_minus = (- b + np.sqrt(delta)) / (2 * a), (- b - np.sqrt(delta)) / (2 * a)
dist = np.where(np.logical_and(delta == 0, t0 > 0), velocity_i_norm * t0, dist)
dist = np.where(np.logical_and(delta > 0, t_plus > 0), velocity_i_norm * t_plus, dist)
dist = np.where(np.logical_and(delta > 0, t_minus > 0), velocity_i_norm * t_minus, dist)
dist = np.where(dist > self.d_max, self.d_max, dist)
dist = np.where(dist < 0, 0, dist)
out = np.min(dist)
return out
def cost_angle_function(self, angle, subj_desired_angle, i, possible_i_index, near_wall):
"""
This function calculates the cost_angle_function for a given angle. This function is described in [1].
Each particle i has a desired angle but has obstacle on its path. The cost function calculates the cost of a
possible path for one angle.
:param angle: angle that particle i looks at.
:type angle: float
:param subj_desired_angle: optimum angle to go to particle i 's destination if there's no obstacle.
:type subj_desired_angle: float
:param i: index of particle i.
:type i: int
:param possible_i_index: All the possible particle neighbors that can be on the path of i.
:type possible_i_index: np.array
:param near_wall: True if particle is near a wall, False otherwise.
:type near_wall: bool
:return: value of the cost function.
:rtype: float
"""
if possible_i_index.size > 0:
f_angle1 = self.particle_collision_horizon(angle, i, possible_i_index)
else:
f_angle1 = self.d_max
if near_wall:
f_angle2 = self.wall_collision_horizon(angle, i)
else:
f_angle2 = self.d_max
f_angle = np.min([f_angle1, f_angle2])
return self.d_max ** 2 + f_angle ** 2 - 2 * self.d_max * f_angle * np.cos(subj_desired_angle - angle[0])
def optimum_angle(self, subj_desired_angle, i, possible_i_index, near_wall):
"""
This function finds the optimum angle for particle i to get to its target without entering in collision
with other particles.
:param subj_desired_angle: optimum angle to go to particle i 's destination if there's no obstacle.
:type subj_desired_angle: float
:param i: index of particle i.
:type i: int
:param possible_i_index: All the possible particle neighbors that can be on the path of i.
:type possible_i_index: np.array
:param near_wall: True if particle is near a wall, False otherwise.
:type near_wall: bool
:return: optimum angle that particle i should take.
:rtype: float
"""
possible_angle = np.linspace(-self.angle_range, self.angle_range, 750)
y = []
for angle in possible_angle:
y.append(self.cost_angle_function([angle], subj_desired_angle, i, possible_i_index, near_wall))
index_min = np.argmin(y)
return possible_angle[index_min]
def get_in_range_neighbors(self, free_index):
"""
This function returns all the neighbors of all the particles in free_index.
:param free_index: index of the particles of interest.
:type free_index: np.array
:return: array of neighbors.
:rtype: np.array of lists
"""
point_tree = spatial.cKDTree(self.position_array)
possible_neighbors = point_tree.query_ball_point(self.position_array[free_index], self.d_max)
in_range_neighbors = np.frompyfunc(list, 0, 1)(np.empty(possible_neighbors.size, dtype=object))
for i, elt in enumerate(possible_neighbors):
real_i = free_index[i]
elt.remove(real_i)
if len(elt) > 0:
fictive_i_index = np.array(elt, dtype=int)
fictive_i_position_array = self.position_array[fictive_i_index]
fictive_i_vector_array = fictive_i_position_array - self.position_array[real_i]
vx, vy = self.velocities_array[real_i, 0], self.velocities_array[real_i, 1]
possible_angle_array = np.arctan2(fictive_i_vector_array[:, 1], fictive_i_vector_array[:, 0]) - \
np.arctan2(vy, vx)
possible_angle_array = np.where(possible_angle_array < - np.pi,
possible_angle_array + 2 * np.pi, possible_angle_array)
possible_angle_array = np.where(possible_angle_array > np.pi,
possible_angle_array - 2 * np.pi, possible_angle_array)
distance_array = np.linalg.norm(fictive_i_vector_array, axis=1)
extra_angle_array = np.arcsin(2 * self.radius / distance_array)
in_range_i_index = np.where(np.logical_and(possible_angle_array < self.angle_range + extra_angle_array,
possible_angle_array > -self.angle_range - extra_angle_array))[
0]
in_range_neighbors[i].extend((fictive_i_index[in_range_i_index]))
return in_range_neighbors
def total_optimum_angle(self, free_index):
"""
This function finds the optimum angle for all the particles in free_index to get to their target without
entering in collision with other particles.
:param free_index: index of the particles of interest.
:type free_index: np.array
"""
in_range_neighbors = self.get_in_range_neighbors(free_index)
distance_to_wall_array = self.distance_to_wall()
for i, elt in enumerate(in_range_neighbors):
real_i = free_index[i]
desired_vector = self.desired_position[real_i] - self.position_array[real_i]
subj_desired_angle = np.arctan2(desired_vector[1], desired_vector[0]) - self.angle_array[real_i]
possible_i_index = np.array(elt)
target_i = self.target_array[i]
if target_i in possible_i_index:
possible_i_index = np.setdiff1d(possible_i_index, target_i)
if possible_i_index.size > 0 and np.any(distance_to_wall_array[real_i] < self.d_max):
optimum_angle = self.optimum_angle(subj_desired_angle, real_i, possible_i_index, True)
distance_to_obstacle1 = self.particle_collision_horizon([optimum_angle], real_i, possible_i_index)
distance_to_obstacle2 = self.wall_collision_horizon([optimum_angle], real_i)
distance_to_obstacle = np.min([distance_to_obstacle1, distance_to_obstacle2])
elif possible_i_index.size > 0:
optimum_angle = self.optimum_angle(subj_desired_angle, real_i, possible_i_index, False)
distance_to_obstacle = self.particle_collision_horizon([optimum_angle], real_i, possible_i_index)
elif np.any(distance_to_wall_array[real_i] < self.d_max):
optimum_angle = self.optimum_angle(subj_desired_angle, real_i, possible_i_index, True)
distance_to_obstacle = self.wall_collision_horizon([optimum_angle], real_i)
else:
optimum_angle = subj_desired_angle
distance_to_obstacle = self.d_max
if np.isnan(optimum_angle):
a=1
self.optimum_angle_array[real_i] = optimum_angle
if 0 < distance_to_obstacle < self.d_max:
self.velocity_norm[real_i] = np.min([distance_to_obstacle / self.tau, self.v])
else:
self.velocity_norm[real_i] = self.v
def update_velocities(self, real_contact_pairs, real_contact_index, departure_index):
"""
This function updates the velocities of all the particles, according to what is described in [1]. The stop
mechanism is added, and the velocities for particles in contact is set to zero. The departure mechanism is also
added: after a contact, particles part to a new destination.
:param real_contact_pairs: all the pairs of contact. Shape is (t, 2)
:type real_contact_pairs: np.array
:param real_contact_index: indexes of the particles in contact. Shape is (m, )
:type real_contact_index: np.array
:param departure_index: all the particles that part from their previous contact.
:type departure_index: np.array
"""
if real_contact_index.size > 0:
self.velocities_array[real_contact_index] = 0
free_index = np.setdiff1d(np.arange(self.n_particles), real_contact_index)
free_index = np.append(free_index, departure_index)
i_index_array, j_index_array = real_contact_pairs[:, 0], real_contact_pairs[:, 1]
position_i_array, position_j_array = self.position_array[i_index_array], self.position_array[j_index_array]
centers_array = position_j_array - position_i_array
distance_array = np.linalg.norm(centers_array, axis=-1).reshape(-1, 1)
self.position_array[i_index_array] = position_i_array - (
2.5 * self.radius - distance_array) * centers_array / distance_array
else:
free_index = np.arange(self.n_particles)
old_velocity_norm = np.copy(self.velocity_norm[free_index])
self.total_optimum_angle(free_index)
cos_angle, sin_angle = np.cos(self.optimum_angle_array[free_index]), np.sin(
self.optimum_angle_array[free_index])
vx, vy = np.copy(self.velocities_array[free_index, 0]), np.copy(self.velocities_array[free_index, 1])
self.velocities_array[free_index, 0] = cos_angle * vx - sin_angle * vy
self.velocities_array[free_index, 1] = cos_angle * vy + sin_angle * vx
zero_mask = old_velocity_norm == 0
if np.any(zero_mask):
self.velocities_array[zero_mask] = self.velocity_norm[zero_mask] * self.velocities_array[zero_mask]
self.velocities_array[free_index] = self.velocities_array[free_index] / old_velocity_norm * self.velocity_norm[
free_index]
self.angle_array = self.optimum_angle_array + self.angle_array
self.angle_array = np.where(self.angle_array < - np.pi, self.angle_array + 2 * np.pi, self.angle_array)
self.angle_array = np.where(self.angle_array > np.pi, self.angle_array - 2 * np.pi, self.angle_array)
def border(self):
"""
This function calculates the collision of a particle with a wall.
"""
distance_w_array = self.distance_to_wall()
wall_coll_row, wall_coll_col = np.where(distance_w_array < self.radius)
# add orientation and self.angle range (to do)
for i, elt in enumerate(wall_coll_row):
self.wall_body_collision(elt, self.wall_array[i, :2], distance_w_array[elt, wall_coll_col[i]])
def particle_body_collision(self, i, j, dist_ij, k=5000):
"""
This updates the velocity of particles that are in contact but aren't the target of one another.
:param i: index of particle i
:type i: int
:param j: index of particle j
:type j: int
:param dist_ij: distance between i and j
:type dist_ij: float
:param k: force constant
:type k: float
"""
force_ij = k * (2.5 * self.radius - dist_ij)
if force_ij == 0:
force_ij = 1
n_ij = (self.position_array[i] - self.position_array[j]) / dist_ij
vi_t = self.velocities_array[i]
vi_t_dt = self.dt * force_ij * n_ij / (320 * self.radius) + vi_t
vi_norm = np.linalg.norm(vi_t_dt)
if vi_norm != self.v:
vi_t_dt = vi_t_dt * self.v / vi_norm
vi_norm = self.v
self.velocities_array[i] = vi_t_dt
self.velocity_norm[i] = vi_norm
self.angle_array[i] = np.arctan2(self.velocities_array[i, 1], self.velocities_array[i, 0])
def particles_contact(self, false_contact_pairs):
"""
This function updates the velocities of particles i and j that are in contact but shouldn't be.
:param false_contact_pairs: array of all the pairs of particles that shouldn't be in contact.
:type false_contact_pairs: np.array
"""
for elt in false_contact_pairs:
i, j = elt[0], elt[1]
dist_ij = np.linalg.norm(self.position_array[j] - self.position_array[i])
self.particle_body_collision(i, j, dist_ij)
self.particle_body_collision(j, i, dist_ij)
def target_probability(self, index):
"""
This function defines at the beginning of the simulation all the types of relationship for each particle i. This
function returns a probability array, where the elt of index (i, j) is the probability that particle i chooses
j as a target. This array is not symmetric.
:return: array of probabilities. Shape is (n_particles, n_particles)
:rtype: np.array
"""
subj_weight = np.copy(self.weight_array)
subj_weight[index, self.target_array[index]] = 0
norm = np.sum(subj_weight, axis=1)
probability_array = subj_weight / norm[:, None]
return probability_array
def target(self, index):
"""
This function returns a target for each particle. A target can be another particle or a specific point in the
box.
:param index: Index of the particles that need a new target.
:type index: np.array
:return: array of the new targets.
:rtype: np.array
"""
probability_array = self.target_probability(index)
new_target_array = [np.random.choice(self.n_particles, p=x) for x in probability_array[index]]
return new_target_array
def departure(self):
"""
This function calculates if particles in contact stay together or part from each other. The function also
defines the new targets of particles that have just finished a contact.
:return: Index of particles that separate
:rtype: np.array
"""
departure_index = []
for elt in self.pairs_iteration:
i = elt[0]
j = elt[1]
iteration = elt[2]
prob_0 = 0.8 * (1 - np.exp(-iteration/2))
prob_1 = 1-prob_0
dep = np.random.choice(2, p=[prob_0, prob_1])
if dep == 1:
departure_index.extend([i, j])
self.previous_contact[i] = j
self.previous_contact[j] = i
departure_index = np.unique(np.array(departure_index, dtype=int))
if departure_index.size > 0:
self.target_array[departure_index] = self.target(departure_index)
return np.unique(np.array(departure_index))
def initial_weight(self, output_type='uniform', k=2):
"""
This function returns the initial weight array between all the particles that determines which will be the next
target of a particle. This weight array is updated at each time step.
:param output_type: 3 choices: ['uniform', 'power', 'exponential'], that will define the type of the initial weight array
:type output_type: str
:param k: coefficient for the 'power' and 'exponential' outputs
:return: initial weight array
:rtype: np.array
"""
n = self.n_particles
if output_type == 'uniform':
out = np.ones((n, n))
elif output_type == 'power':
out = np.random.zipf(k, (n, n))
elif output_type == 'exponential':
out = np.random.exponential(k, (n, n))
else:
raise NameError(str(output_type) + ' is not in the output_type list')
out1 = np.triu(out)
out = out1 + np.transpose(out1)
np.fill_diagonal(out, 0)
return out
def get_desired_position(self):
"""
This function returns the desired position of each particle. When a particle targets another one, it will try
to find the nearest point of contact with the target particle. If the particle is not attainable, then it
follows the particle.
:return: desired position array
:rtype: np.array
"""
out = np.empty((self.n_particles, 2))
centers_array = self.position_array[self.target_array] - self.position_array
a = np.einsum('ij,ij->i', centers_array, self.velocities_array)
inf_mask = a <= 0
sup_mask = ~inf_mask
vel_norm = np.linalg.norm(self.velocities_array[self.target_array], axis=1)
non_zero_mask = vel_norm != 0
zero_mask = ~non_zero_mask
non_zero_sup_mask = np.logical_and(non_zero_mask, sup_mask)
zero_sup_mask = np.logical_and(zero_mask, sup_mask)
vel_angle_array = np.arctan2(self.velocities_array[non_zero_sup_mask, 1],
self.velocities_array[non_zero_sup_mask, 0])
cen_angle_array = np.arctan2(centers_array[non_zero_sup_mask, 1],
centers_array[non_zero_sup_mask, 0])
beta_array = cen_angle_array - vel_angle_array
dist_array = np.linalg.norm(centers_array[non_zero_sup_mask], axis=1)
target_vel = self.velocities_array[self.target_array[non_zero_sup_mask]]
normed_vel = target_vel / vel_norm[non_zero_sup_mask, None]
dist_to_obstacle = dist_array / (2 * np.cos(beta_array))
delta_pos = normed_vel * dist_to_obstacle[:, None]
zero_inf_mask = np.logical_or(inf_mask, zero_sup_mask)
out[zero_inf_mask] = self.position_array[self.target_array[zero_inf_mask]]
out[non_zero_sup_mask] = self.position_array[self.target_array[non_zero_sup_mask]] + delta_pos
return out
def new_pairs_iteration(self):
"""
This function returns the contact pairs and the number of iterations they have stayed together in one array.
The two first columns are the pairs and the third is the number of iterations.
:return: pairs + number of iteration the pairs have stayed together.
:rtype: np.array.
"""
if self.pairs_iteration.size == 0 and self.real_pairs.size == 0:
out = np.empty((0, 3), dtype=int)
elif self.pairs_iteration.size == 0:
out = np.concatenate((self.real_pairs, np.ones((self.real_pairs.shape[0], 1), dtype=int)), axis=1, dtype=int)
else:
old_pairs = self.pairs_iteration[:, :2]
new_in_mask = (old_pairs[:, None] == self.real_pairs).all(-1).any(-1)
self.pairs_iteration[new_in_mask, 2] = self.pairs_iteration[new_in_mask, 2] + 1
old_pairs_iteration = self.pairs_iteration[new_in_mask]
old_in_mask = (self.real_pairs[:, None] == old_pairs).all(-1).any(-1)
new_pairs = self.real_pairs[~old_in_mask]
if new_pairs.size == 0:
out = old_pairs_iteration
else:
new_pairs_iteration = np.concatenate((new_pairs, np.ones((new_pairs.shape[0], 1), dtype=int)), axis=1, dtype=int)
out = np.concatenate((old_pairs_iteration, new_pairs_iteration), axis=0, dtype=int)
return out
def real_contact(self, contact_pairs):
"""
This function finds the pairs of particles that are 'really' in contact: if two particles are in contact but not
a target of one another, then they are not a 'real' contact. On the opposite, if two particles are in contact
but a target of one another, then they are a 'real' contact.
:param contact_pairs: All the pairs of contact. Shape is (m, 2)
:type contact_pairs: np.array
:return: index of the real pairs of contact, and the index of the particles in real contact. Shape is (2, ).
:rtype: tuple of np.array
"""
real_contact_index = []
real_pairs_index = []
for i, elt in enumerate(contact_pairs):
if self.previous_contact[elt[0]] != elt[1]:
real_contact_index.extend(elt)
real_pairs_index.append(i)
real_contact_index = np.unique(np.array(real_contact_index))
return real_pairs_index, real_contact_index
def iter_movement(self, step, animation=False):
"""This function updates the self.position_array at time step*dt. The function takes the position of the array
(x, y) and adds a ballistic infinitesimal step (dx, dy). Hence the new position is (x+dx, y+dy). The borders of
the box are also considered with the self.border() function.
:param step: step of the iteration. It ranges from 0 to self.n_steps-1
:type step: int
:param animation: This parameter is set to False by default. This means that the creation_tij array is stored and can be analyzed. It is set to true only when the animation is run. As the animation can run indefinitely, too much data can be stored
:type animation: bool, optional
"""
departure_index = self.departure()
contact_pairs, contact_index = self.contact()
real_pairs_index, real_contact_index = self.real_contact(contact_pairs)
self.real_pairs = contact_pairs[real_pairs_index]
self.pairs_iteration = self.new_pairs_iteration()
false_pairs_index = np.setdiff1d(np.arange(contact_pairs.shape[0]), real_pairs_index)
self.update_velocities(self.real_pairs, real_contact_index, departure_index)
self.border()
self.particles_contact(contact_pairs[false_pairs_index])
self.position_array = self.position_array + self.velocities_array * self.dt
self.position_array[0] = [10, 10]
self.position_array[1] = [90, 90]
self.velocities_array[0] = [0.000000000000000000000001, 0.00000000000000000000000000001]
self.velocities_array[1] = [0.00000000000000000000000001, 0.0000000000000000000000000001]
self.desired_position = self.get_desired_position()
self.weight_array[self.real_pairs[:, 0], self.real_pairs[:, 1]] += 1
if not animation:
self.creation_tij(step, contact_pairs)