-
Notifications
You must be signed in to change notification settings - Fork 0
/
Plot_Baseline_Weights.py
457 lines (340 loc) · 19.3 KB
/
Plot_Baseline_Weights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import sys
import numpy
import powerbox
import argparse
import matplotlib.colors as colors
from src.radiotelescope import RadioTelescope
from src.radiotelescope import ideal_gaussian_beam
from src.util import redundant_baseline_finder
from src.skymodel import SkyRealisation
from src.generaltools import from_lm_to_theta_phi
from src.plottools import colorbar
from scipy.signal import convolve2d
sys.path.append("../")
def main(plot_u_dist = False ,plot_array_matrix = False, plot_inverse_matrix = False, plot_weights = False ,
grid_weights = True, binned_weights = True):
plot_blaah = True
show_plot = True
save_plot = False
path = "./Data/MWA_Compact_Coordinates.txt"
plot_folder = "../Plots/Analytic_Covariance/"
telescope = RadioTelescope(load=True, path=path)
if plot_u_dist:
make_plot_uv_distribution(telescope, show_plot=show_plot, save_plot=save_plot, plot_folder=plot_folder)
n_baselines = telescope.baseline_table.number_of_baselines
sky_matrix = sky_matrix_constructor(telescope)
redundant_matrix = redundant_matrix_constructor(telescope)
print(redundant_matrix.shape)
print(sky_matrix.shape)
print(f"Sky Calibration uses {len(sky_matrix[:, 3])/2} baselines")
print(f"Redundant Calibration uses {len(redundant_matrix[:, 3])/2} baselines")
if plot_array_matrix:
make_plot_array_matrix(sky_matrix, show_plot=show_plot, save_plot=save_plot, plot_folder=plot_folder)
make_plot_array_matrix(redundant_matrix, show_plot=show_plot, save_plot=save_plot, plot_folder=plot_folder)
print(numpy.linalg.cond(sky_matrix))
print(numpy.linalg.cond(redundant_matrix))
inverse_sky_matrix = numpy.linalg.pinv(sky_matrix)
inverse_redundant_matrix = numpy.linalg.pinv(redundant_matrix)
if plot_inverse_matrix:
make_plot_array_matrix(inverse_sky_matrix.T, show_plot=show_plot, save_plot=save_plot, plot_folder=plot_folder)
make_plot_array_matrix(inverse_redundant_matrix.T, show_plot=show_plot, save_plot=save_plot, plot_folder=plot_folder)
sky_weights = numpy.sqrt((numpy.abs(inverse_sky_matrix[::2, ::2])**2 +
numpy.abs(inverse_sky_matrix[1::2, 1::2])**2))
redundant_weights = numpy.sqrt((numpy.abs(inverse_redundant_matrix[::2, ::2])**2 +
numpy.abs(inverse_redundant_matrix[1::2, 1::2])**2))
print(f"Every Sky calibrated Tile sees {len(sky_weights[0,:][sky_weights[0, :] > 1e-4])}")
print(f"Every redundant Tile sees {len(redundant_weights[0,:][redundant_weights[0, :] > 1e-4])}")
u_bins_sky = numpy.linspace(0, 375, 51)
u_bins_red = numpy.linspace(0, 100, 25)
redundant_bins, redundant_uu_weights, red_counts = compute_binned_weights(redundant_baseline_finder(telescope.baseline_table),
redundant_weights, binned=True, u_bins=u_bins_red)
sky_bins, sky_uu_weights, sky_counts = compute_binned_weights(telescope.baseline_table, sky_weights, binned=True, u_bins=u_bins_sky)
print(redundant_uu_weights.shape)
if plot_blaah:
figure, axes = pyplot.subplots(2,3, figsize=(6, 4))
sky_bins, sky_approx = baseline_hist(sky_bins, telescope.baseline_table)
redundant_bins, redundant_approx = baseline_hist(redundant_bins, redundant_baseline_finder(telescope.baseline_table))
norm = colors.LogNorm()
# redplot = axes[1, 0].pcolor(redundant_bins, redundant_bins, redundant_uu_weights, norm = norm)
redplot = axes[1, 0].semilogy(redundant_bins[:len(redundant_bins)-1],redundant_uu_weights, 'k', alpha = 0.3)
norm = colors.LogNorm()
# skyplot = axes[0, 0].pcolor(sky_bins, sky_bins, sky_uu_weights, norm=norm)
skyplot = axes[0, 0].semilogy(sky_bins[:len(sky_bins)-1],sky_uu_weights, 'k', alpha = 0.3)
norm = colors.LogNorm()
# countsredplot = axes[1, 1].pcolor(redundant_bins, redundant_bins, red_counts, norm = norm)
countsredplot = axes[1, 1].semilogy(redundant_bins[:len(redundant_bins)-1],red_counts, 'k', alpha = 0.3)
norm = colors.LogNorm()
# countskyplot = axes[0, 1].pcolor(sky_bins, sky_bins, sky_counts, norm = norm)
countskyplot = axes[0, 1].semilogy(sky_bins[:len(sky_bins)-1], sky_counts, 'k', alpha = 0.3)
norm = colors.LogNorm()
# normredplot = axes[1, 2].pcolor(redundant_bins, redundant_bins, redundant_uu_weights/red_counts,
# norm = norm)
normredplot = axes[1, 2].semilogy(redundant_bins[:len(redundant_bins)-1], (redundant_uu_weights/red_counts).T, 'k', alpha = 0.3)
normredplot = axes[1, 2].semilogy(redundant_bins[:len(redundant_bins)-1], 1/redundant_approx/245, 'C0')
# normskyplot = axes[0, 2].pcolor(sky_bins, sky_bins, sky_uu_weights/sky_counts, norm = norm)
normskyplot = axes[0, 2].semilogy(sky_bins[:len(sky_bins)-1],(sky_uu_weights/sky_counts).T, 'k', alpha = 0.3)
normskyplot = axes[0, 2].semilogy(sky_bins[:len(sky_bins)-1], 1/sky_approx/127, 'C0')
axes[1, 0].set_xlabel(r"$u\,[\lambda]$")
axes[1, 1].set_xlabel(r"$u\,[\lambda]$")
axes[1, 1].set_xlabel(r"$u\,[\lambda]$")
axes[0, 0].set_ylabel(r"$u^{\prime}\,[\lambda]$")
axes[1, 0].set_ylabel(r"$u^{\prime}\,[\lambda]$")
axes[0, 0].set_title("Sky Weights")
axes[1, 0].set_title("Redundant Weights")
axes[0, 1].set_title("Sky Normalisation")
axes[1, 1].set_title("Redundant Normalisation")
axes[0, 2].set_title("Sky Normalised Weights")
axes[1, 2].set_title("Redundant Normalised Weights")
# colorbar(redplot)
# colorbar(skyplot)
# colorbar(countsredplot)
# colorbar(countskyplot)
# colorbar(normredplot)
# colorbar(normskyplot)
pyplot.tight_layout()
if show_plot:
pyplot.show()
return
""""
baseline_weights = numpy.sqrt((numpy.abs(inverse_array_matrix[::2, ::2])**2 +
numpy.abs(inverse_array_matrix[1::2, 1::2])**2))
print(f"Every Tile sees {len(baseline_weights[0,:][baseline_weights[0, :] > 1e-4])}")
# baseline_weights = numpy.sqrt(numpy.abs(inverse_array_matrix[:int(len(telescope.antenna_positions.antenna_ids) - 1), :int(len(baseline_lengths))])**2 + \
# numpy.abs(inverse_array_matrix[int(len(telescope.antenna_positions.antenna_ids) -1 ):, :int(len(baseline_lengths)):])**2)
if plot_weights:
figure_weights, axes_weights = pyplot.subplots(1,1)
normalised_weights = axes_weights.imshow(baseline_weights)
axes_weights.set_title("Antenna Baseline Weights")
colorbar(normalised_weights)
# blaah = numpy.unique(baseline_weights)
# figblaah, axblaah = pyplot.subplots(1,1)
# axblaah.hist(baseline_weights.flatten(), bins = 100)
# axblaah.set_yscale('log')
uu_weights = numpy.zeros((len(baseline_lengths), len(baseline_lengths)))
baselines = telescope.baseline_table
antennas = telescope.antenna_positions.antenna_ids
for i in range(len(baseline_lengths)):
index1 = numpy.where(antennas == baselines.antenna_id1[i])[0]
index2 = numpy.where(antennas == baselines.antenna_id2[i])[0]
if index1 == 0:
baseline_weights1 = 0
else:
baseline_weights1 = baseline_weights[index1 - 1, :]
if index2 == 0:
baseline_weights2 = 0
else:
baseline_weights2 = baseline_weights[index2 - 1, :]
uu_weights[i, :] = numpy.sqrt((baseline_weights1**2 + baseline_weights2**2))
u_bins = numpy.linspace(0, numpy.max(baseline_lengths), 101)
bin_size = (u_bins.max() - u_bins.min())/len(u_bins)
sorted_indices = numpy.argsort(baseline_lengths)
sorted_weights = uu_weights[sorted_indices, :][:, sorted_indices]
bin_indices = numpy.digitize(baseline_lengths[sorted_indices], u_bins)
print(f"A uncalibrated baseline sees {len(uu_weights[:, 190][uu_weights[:, 190] > 1e-4])}")
print(f"A calibrated baseline sees {len(uu_weights[190, :][uu_weights[190, :] > 1e-4])}")
print(f"A sorted uncalibrated baseline sees {len(sorted_weights[:, 2489][sorted_weights[:, 2489] > 1e-4])}")
print(f"A sorted calibrated baseline sees {len(sorted_weights[190, :][sorted_weights[190, :] > 1e-4])}")
if grid_weights:
fig_cal, axes_cal = pyplot.subplots(1,2, figsize = (100, 50))
cal_plot = axes_cal[0].imshow(uu_weights, origin = 'lower', interpolation = 'none')
axes_cal[0].set_xlabel("Uncalibrated Baseline Index")
axes_cal[0].set_ylabel("Calibrated Baseline Index")
axes_cal[0].set_title("Quadrature Added Real and Imaginary Weights")
colorbar(cal_plot)
sorted_plot = axes_cal[1].imshow(sorted_weights, interpolation='none', origin='lower')
axes_cal[1].set_xlabel("Uncalibrated Baseline Index")
axes_cal[1].set_title(" Baseline Length Sorted Weights")
colorbar(sorted_plot)
for i in range(len(bin_indices)):
if i == 0:
pass
elif bin_indices[i] == bin_indices[i-1]:
pass
else:
axes_cal[1].axvline(i, linestyle = "-", color = 'gray', alpha = 0.4 )
axes_cal[1].axhline(i, linestyle = "-", color = 'gray', alpha = 0.4)
# unique_values = numpy.unique(u_u_weights)
# figs, axs = pyplot.subplots(1,1)
# axs.hist(unique_values, bins = 1000)
if binned_weights:
bin_counter = numpy.zeros_like(uu_weights)
bin_counter[uu_weights != 0] = 1
uu1, uu2 = numpy.meshgrid(baseline_lengths, baseline_lengths)
flattened_uu1 = uu1.flatten()
flattened_uu2 = uu2.flatten()
computed_weights = numpy.histogram2d(flattened_uu1, flattened_uu2, bins=u_bins,
weights=uu_weights.flatten())
computed_counts = numpy.histogram2d(flattened_uu1, flattened_uu2, bins=u_bins,
weights = bin_counter.flatten())
figure_binned, axes_binned = pyplot.subplots(3, 3, figsize = (12, 15), subplot_kw= dict(aspect = 'equal') )
summed_norm = colors.LogNorm()
counts_norm = colors.LogNorm()
averaged_norm = colors.LogNorm()
summed = axes_binned[0, 1].pcolor(u_bins, u_bins, computed_weights[0], norm = summed_norm)
counts = axes_binned[0, 2].pcolor(u_bins, u_bins, computed_counts[0], norm = counts_norm)
averaged = axes_binned[0, 0].pcolor(u_bins, u_bins, computed_weights[0]/computed_counts[0]/bin_size**2,
norm = averaged_norm)
averaged_cbar = colorbar(averaged)
counts_cbar = colorbar(counts)
summed_cbar = colorbar(summed)
axes_binned[0,1].set_title(r"Summed Weights")
axes_binned[0,2].set_title(r"Baseline Counts")
axes_binned[0,0].set_title(r"Averaged Weights")
baseline_pdf = numpy.histogram(baseline_lengths, bins = u_bins, density = True)
ww1, ww2 = numpy.meshgrid(baseline_pdf[0], baseline_pdf[0])
summed_anorm = colors.LogNorm( )
counts_anorm = colors.LogNorm( )
averaged_anorm = colors.LogNorm( )
approx_sum = convolve2d(numpy.diag(baseline_pdf[0]), ww1, mode = 'same')
#convolve2d(numpy.diag(baseline_pdf[0])*bin_size**2*len(baseline_lengths)**2, ww1*ww2*bin_size**2*len(baseline_lengths)**2, mode = 'same')*ww1*ww2*bin_size**2*len(baseline_lengths)**2
# convolve2d(ww2, convolve2d(numpy.diag(baseline_pdf[0]), ww1, mode = 'same'), mode='same')# (ww1*ww2)*bin_size**2*len(baseline_lengths)
approx_counts = (ww1*ww2)*bin_size**2*len(baseline_lengths)**2
approx_averaged = approx_sum/approx_counts
averaged_aplot = axes_binned[1, 0].pcolor(u_bins, u_bins , approx_averaged, norm = averaged_anorm)
sum_aplot = axes_binned[1, 1].pcolor(u_bins, u_bins, approx_sum, norm=summed_anorm)
counts_aplot = axes_binned[1, 2].pcolor(u_bins, u_bins, approx_counts, norm=counts_anorm)
acbar_sum = colorbar(sum_aplot)
acbar_averaged = colorbar(averaged_aplot)
acbar_counts = colorbar(counts_aplot)
axes_binned[2, 0].set_title(r"Differences")
blaah = axes_binned[2, 0].pcolor(u_bins, u_bins, computed_weights[0]/computed_counts[0] - approx_sum)
axes_binned[2, 0].set_ylabel(r"$u^{\prime}\,[\lambda]$")
colorbar(blaah)
axes_binned[0, 0].set_ylabel(r"$u^{\prime}\,[\lambda]$")
axes_binned[1, 0].set_ylabel(r"$u^{\prime}\,[\lambda]$")
axes_binned[2, 0].set_ylabel(r"$u^{\prime}\,[\lambda]$")
axes_binned[2, 0].set_xlabel(r"$u\,[\lambda]$")
axes_binned[1, 1].set_xlabel(r"$u\,[\lambda]$")
axes_binned[1, 2].set_xlabel(r"$u\,[\lambda]$")
figure_binned.savefig(plot_folder + "Baseline_Weights_uu.pdf")
pyplot.show()
"""
def compute_binned_weights(baseline_table, baseline_weights, binned=True, u_bins = None):
antennas = numpy.unique([baseline_table.antenna_id1, baseline_table.antenna_id2] )
baseline_lengths = numpy.sqrt(baseline_table.u_coordinates**2 + baseline_table.v_coordinates**2)
uu_weights = numpy.zeros((len(baseline_lengths), len(baseline_lengths)))
for i in range(len(baseline_lengths)):
index1 = numpy.where(antennas == baseline_table.antenna_id1[i])[0]
index2 = numpy.where(antennas == baseline_table.antenna_id2[i])[0]
if index1 == 0:
baseline_weights1 = 0
else:
baseline_weights1 = baseline_weights[index1 - 1, :]
if index2 == 0:
baseline_weights2 = 0
else:
baseline_weights2 = baseline_weights[index2 - 1, :]
weights = numpy.sqrt((baseline_weights1**2 + baseline_weights2**2))
weights[weights < 1e-4] = 0
uu_weights[i, :] = weights
sorted_indices = numpy.argsort(baseline_lengths)
sorted_weights = uu_weights[sorted_indices, :][:, sorted_indices]
if binned:
if u_bins is None:
u_bins = numpy.linspace(0, numpy.max(baseline_lengths), 101)
bin_counter = numpy.zeros_like(uu_weights)
bin_counter[uu_weights > 0] = 1
uu1, uu2 = numpy.meshgrid(baseline_lengths, baseline_lengths)
flattened_uu1 = uu1.flatten()
flattened_uu2 = uu2.flatten()
computed_weights = numpy.histogram2d(flattened_uu1, flattened_uu2, bins=u_bins,
weights=uu_weights.flatten())
computed_counts = numpy.histogram2d(flattened_uu1, flattened_uu2, bins=u_bins, normed=False)
return u_bins, computed_weights[0], computed_counts[0]
def baseline_hist(u, baseline_table):
baseline_lengths = numpy.sqrt(baseline_table.u_coordinates**2 + baseline_table.v_coordinates**2)
hist, edges = numpy.histogram(baseline_lengths, u)
return u, len(baseline_lengths)/(hist)
def make_plot_uv_distribution(telescope, show_plot = True, save_plot = False, plot_folder = "./"):
baseline_lengths = numpy.sqrt(telescope.baseline_table.u_coordinates**2 + telescope.baseline_table.v_coordinates**2)
figure_u, axes_u = pyplot.subplots(1, 1)
axes_u.hist(baseline_lengths, density=True, bins=100, label="MWA Phase II Compact")
axes_u.set_xlabel(r"$u\,[\lambda]$")
axes_u.set_ylabel("Baseline PDF")
axes_u.legend()
if save_plot:
figure_u.savefig(plot_folder + "MWA_Phase_II_Baseline_PDF.pdf")
if show_plot:
pyplot.show()
return
def make_plot_array_matrix(array_matrix, show_plot = True, save_plot = False, plot_folder = "./"):
figure_amatrix = pyplot.figure(figsize=(10, 5))
axes_amatrix = figure_amatrix.add_subplot(111)
absmatrix = numpy.abs(array_matrix)
absmatrix[absmatrix <= 1e-4] = 0
absmatrix[absmatrix > 1e-4] = 1
# blaah, counts = numpy.unique(absmatrix, axis=0, return_counts=True)
counts = (absmatrix[::2, ::2] == 1).sum(axis=0)
pyplot.hist(counts[0:128], bins=30)
pyplot.xlabel("Number of Baselines", fontsize =20)
pyplot.ylabel("Number of Antennas", fontsize =20)
pyplot.show()
#plot_amatrix = axes_amatrix.plot(array_matrix.T)
#colorbar(plot_amatrix)
axes_amatrix.set_xlabel("Baseline Number", fontsize = 15)
axes_amatrix.set_ylabel("Antenna Number", fontsize = 15)
if save_plot:
figure_amatrix.savefig(plot_folder + "Array_Matrix_Double.pdf")
if show_plot:
pyplot.show()
return
def redundant_matrix_constructor(telescope):
redundant_table = redundant_baseline_finder(telescope.baseline_table)
redundant_group_ids = numpy.unique(redundant_table.group_indices)
antennas = numpy.unique([redundant_table.antenna_id1, redundant_table.antenna_id2] )
x_positions, y_positions = redundant_positions(telescope, antennas)
number_antennas = len(antennas)
number_groups = len(redundant_group_ids)
array_matrix = numpy.zeros((2 * redundant_table.number_of_baselines, 2 * number_antennas + 2*number_groups))
for i in range(redundant_table.number_of_baselines):
index1 = numpy.where(antennas == redundant_table.antenna_id1[i])[0]
index2 = numpy.where(antennas == redundant_table.antenna_id2[i])[0]
index3 = numpy.where(redundant_group_ids == redundant_table.group_indices[i])[0]
# Fill in the real rows
array_matrix[2 * i, 2 * index1] = 1
array_matrix[2 * i, 2 * index2] = 1
array_matrix[2 * i, 2*number_antennas + 2 * index3] = 1
# Fill in the imaginary rows
array_matrix[2 * i + 1, 2 * index1 + 1] = 1
array_matrix[2 * i + 1, 2 * index2 + 1] = -1
array_matrix[2 * i + 1, 2*number_antennas + 2 * index3 + 1] = 1
# constraints = numpy.zeros((2,2 * number_antennas + 2*number_groups))
# constraints[0, 1: 2* number_antennas +1:2] = x_positions
# constraints[1, 1: 2 * number_antennas + 1:2] = y_positions
#
# constrained_matrix = numpy.vstack((array_matrix, constraints))
constrained_matrix = array_matrix[:, 2:]
return constrained_matrix
def sky_matrix_constructor(telescope):
antennas = telescope.antenna_positions.antenna_ids
baselines = telescope.baseline_table
array_matrix = numpy.zeros((2 * baselines.number_of_baselines, 2 * len(antennas)))
for i in range(baselines.number_of_baselines):
index1 = numpy.where(antennas == baselines.antenna_id1[i])[0]
index2 = numpy.where(antennas == baselines.antenna_id2[i])[0]
# Fill in the real rows
array_matrix[2 * i, 2 * index1] = 1
array_matrix[2 * i, 2 * index2] = 1
# Fill in the imaginary rows
array_matrix[2 * i + 1, 2 * index1 + 1] = 1
array_matrix[2 * i + 1, 2 * index2 + 1] = -1
constrained_matrix = array_matrix[:, 2:]
return constrained_matrix
def redundant_positions(telescope, antennas):
antenna_table = telescope.antenna_positions
x_positions = numpy.zeros(len(antennas))
y_positions = x_positions.copy()
for i in range(len(antennas)):
index = numpy.where(antenna_table.antenna_ids == antennas[i])[0]
x_positions[i] = antenna_table.x_coordinates[index]
y_positions[i] = antenna_table.y_coordinates[index]
return x_positions, y_positions
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--ssh", action="store_true", dest="ssh_key", default=False)
params = parser.parse_args()
import matplotlib
if params.ssh_key:
matplotlib.use("Agg")
from matplotlib import pyplot
main()