silly-k
is an experimental language inspired by K
and APL,
with an accompanying post.
The silly prefix is meant to indicate that this is project is nothing more than an experiment to see how these languages would perform when described in lambda calculus terms.
The compiler is written for the nanopass framework using the following structure:
- the
K
-like,APL
inspired, syntax is translated into something like simply typed lambda calculus which is used to resolve the overloaded symbols from K, - after that, the types are thrown away and is compiled to Malfunction or to Scheme (which is used mainly for quick tests and the REPL).
Easiest way to play around with it is to run the Docker image:
rlwrap docker run --rm -it rootmos/silly-k
which starts the REPL (under rlwrap).
Here's some examples of the syntax, taken directly from the tests:
Code | Stdin | Stdout |
---|---|---|
]7 |
7 |
|
]1 2 3 |
1 2 3 |
|
]1=2 |
0 |
|
]2=2 |
1 |
|
]2<3 |
1 |
|
]2<2 |
0 |
|
]3<2 |
0 |
|
]1<1 2 3 |
0 1 1 |
|
]1 2 3>2 |
0 0 1 |
|
]2>3 |
0 |
|
]2>2 |
0 |
|
]3>2 |
1 |
|
]{w>1}'1 2 3 |
0 1 1 |
|
]3>1 2 3 |
1 1 0 |
|
]1 2 3>2 |
0 0 1 |
|
]1=2 |
0 |
|
]2=2 |
1 |
|
]{w=2}'1 2 3 |
0 1 0 |
|
]1 2 3=3 |
0 0 1 |
|
]1=1 2 3 |
1 0 0 |
|
]~1=2 |
1 |
|
]~2=2 |
0 |
|
]~0 |
1 |
|
]~7 |
0 |
|
]~2=1 2 3 |
1 0 1 |
|
](1=2)|2=3 |
0 |
|
](1=2)|2=2 |
1 |
|
](2=2)|2=3 |
1 |
|
](2=2)|3=3 |
1 |
|
](1=2)&2=3 |
0 |
|
](1=2)&2=2 |
0 |
|
](2=2)&2=3 |
0 |
|
](2=2)&3=3 |
1 |
|
]2&3 |
2 |
|
]2|3 |
3 |
|
]1+2 |
3 |
|
]1+2 3 |
3 4 |
|
]1 2+3 4 |
4 6 |
|
]1 2+3 |
4 5 |
|
](1=1)+(2=2) |
2 |
|
]1+(2=2) |
2 |
|
]1+2=1 2 3 |
1 2 1 |
|
](2=1 2 3)+1 |
1 2 1 |
|
]2-3 |
-1 |
|
]1-(-2) |
3 |
|
]1 2-3 4 |
-2 -2 |
|
]-7 |
-7 |
|
]-(-2) |
2 |
|
]1-2 3 |
-1 -2 |
|
]1 2-3 |
-2 -1 |
|
]2*3 |
6 |
|
]1 2*3 |
3 6 |
|
]4*2 3 |
8 12 |
|
]1 2*3 4 |
3 8 |
|
]!1 |
0 |
|
]!4 |
0 1 2 3 |
|
]*1 2 3 |
1 |
|
]*0=0 1 |
1 |
|
]*0=1 0 |
0 |
|
](*0=0 1;7;8) |
7 |
|
](*0=1 0;7;8) |
8 |
|
]#1 2 3 |
3 |
|
]#1 2 3 4 |
4 |
|
]4#1 2 |
1 2 1 2 |
|
]3#1 |
1 1 1 |
|
]1 2 3@1 |
2 |
|
]((2=1 2 3)@1;7;8) |
7 |
|
]((2=1 2 3)@2;7;8) |
8 |
|
]1 2 3@0 2 |
1 3 |
|
]&1 2 3 |
0 1 1 2 2 2 |
|
]7 8@&2 3 |
7 7 8 8 8 |
|
]{w+1}'1 2 3 |
2 3 4 |
|
]{1-w}'3 4 5 |
-2 -3 -4 |
|
]2{a+w}'3 4 5 |
5 6 7 |
|
]2{w-a}'3 4 5 |
1 2 3 |
|
]2+'3 4 5 |
5 6 7 |
|
]2-'3 4 5 |
-1 -2 -3 |
|
]{w@1}'{+w}'1 2 3 |
2 3 4 |
|
]{w@1}'{-w}'1 2 3 |
0 -1 -2 |
|
]+/1 2 3 |
6 |
|
]-/1 2 3 |
2 |
|
]{w-a}/1 2 3 |
0 |
|
]+/2<!5 |
2 |
|
]&/0<1 2 3 |
1 |
|
]&/0<1 0 3 |
0 |
|
]1: |
7 |
7 |
]0: |
1 2 3 |
1 2 3 |
](1:)+1 |
7 |
8 |
]1+0: |
1 2 3 |
2 3 4 |
](0:)+1: |
2\n1 2 3 |
3 4 5 |
](1=1;2;3) |
2 |
|
](1=2;1 2;3 4) |
3 4 |
|
]7{w=1;w;a}1 |
1 |
|
]7{w=1;w;a}8 |
7 |
|
]{w=1;w+1;w=2;w+2;w+3}1 |
2 |
|
]{w=1;w+1;w=2;w+2;w+3}2 |
4 |
|
]{w=1;w+1;w=2;w+2;w+3}3 |
6 |
|
]{w=1;w+1;w=2;w+2;w+3}4 |
7 |
|
](1=1;2;3) |
2 |
|
]{w=0;0;w+_f(w-1)}6 |
21 |
|
]{w=1;1;w=2;1;(_f(w-2))+_f(w-1)}1: |
7 |
13 |
]x+x:7 |
14 |
|
](x:1)+x:2 |
3 |
|
]x+(x:1)+x:2 |
4 |
|
]x+x{x:1+a-w}x:2 |
3 |