Skip to content

Creates a pdf-report for the cpp numerical algorithm

Notifications You must be signed in to change notification settings

roykoand/pdfalgoreport

Repository files navigation

Cpp + Python + LaTeX = Ugly reports generator :)

If you do research in numerical analysis, you often need to get absolute or relative errors of the algorithm and plot these errors. This repo can help you create a pdf report for your algorithm in C++.

Installation

Necessary to have:

g++ compiler
python3.6+ (requirements.txt)
pdflatex

Usage

Pipeline

Pipeline of the report generator consists of 2 parts:

  1. C++ analyzer of the algorithm (algo_analyzer.hpp)
  2. Python script for plotting graphs, creating LaTeX template and calling pdflatex utility for pdf report.

How to use

Firstly, you need to create a new .cpp file, write your function (now it is only a float function) inside it and then call the testing function from the algo_analyzer.hpp.

Crucially to understand how to specify arguments for testing function:

void testing(config config, std::function<float(float)> accelerating_func, std::function<float(float)> true_func)

config is struct which defined as:
struct config
{
    std::string algoName; // your algorithm name 
    std::string author; // name of the algorithm author
    float a; // start value for analyzing the algorithm
    float b; // end value for analyzing the algorithm
    float step; // step for analyzing the algorithm, -1 if you want to analyze
    bool need_absolute_error; // if you need absolute errors
    bool need_relative_error; // if you need relative errors
    bool standard_rel_formula; // if you want to analyze relative error with formula:  your_func(x) / true_func(x) - 1
    bool modified_rel_formula; // if you want to analyze relative error with formula:  your_func(x) * true_func(x) - 1
    int pass_every_n_record; // pass every n record for plot, 1 if you want all points
};

accelerating_func - user-defined float function
true_func - actual float function

After defining the testing function with your arguments, you need to execute your .cpp code. It creates info.txt and errors.csv files. Then you need to execute csv2latex.py. If you did everything successfully, a report_<your-algorithm-name>.pdf file will be created.

Example

You can test the reports generator on the famous Fast Square Inverse Root algorithm (https://github.com/id-Software/Quake-III-Arena/blob/dbe4ddb10315479fc00086f08e25d968b4b43c49/code/game/q_math.c#L546-L581).

example.cpp defined as:

#include "algo_analyzer.hpp"

float Q_rsqrt(float number)
{
	long i;
	float x2, y;
	const float threehalfs = 1.5F;

	x2 = number * 0.5F;
	y  = number;
	i  = * ( long * ) &y;						// evil floating point bit level hacking
	i  = 0x5f3759df - ( i >> 1 );               // what the fuck?
	y  = * ( float * ) &i;
	y  = y * ( threehalfs - ( x2 * y * y ) );   // 1st iteration
    return y;
}

int main(){
    struct config config;
    config.algoName = "Fast Inverse Square root";
    config.author = "Not John D. Carmack";
    config.a = 1.0f;
    config.b = 4.0f;
    config.step = -1.0f;
    config.need_absolute_error = true;
    config.need_relative_error = true;
    config.standard_rel_formula = false;
    config.modified_rel_formula = true;
    config.pass_every_n_record = 100;

    testing(config, Q_rsqrt, sqrt);
}

Create a virtual environment and install all necessary python libraries. You can do this with Makefile in the repo:

make create_env VENV=venv

Then you can generate a report of the algorithm:

make run VENV=venv

If you made all good, my little researcher, in your repository directory would appear report_Fast_Inverse_Square_root.pdf (you can see examples in demo/ directory) and it looks like this:

report 2 errors

Also, you can generate a report with other parameters. For example, a report with one type of error looks like this:

report 1 error

TODO

  • Test a report generator on different parameters. I assume that sometimes it can crush.
  • Invent another pipeline instead of a cpp-file-python cringe.

About

Creates a pdf-report for the cpp numerical algorithm

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published