-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathREADME.txt
30 lines (22 loc) · 1.14 KB
/
README.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
## [CVPR 2022] Motion-from-Blur: 3D Shape and Motion Estimation of Motion-blurred Objects in Videos
### [YouTube](https://youtu.be/lRUuLNZx2bY) | [arXiv](https://arxiv.org/abs/2111.14465)
### Prerequisites
Kaolin is available here: https://github.com/NVIDIAGameWorks/kaolin
Pre-trained DeFMO is implemented directly in kornia.feature.DeFMO
### Running
The code can be easily run by 'python run.py --input video.avi', e.g. check run.sh script.
The results will be written to the output folder.
To run on the fast moving object deblurring benchmark, we used: https://github.com/rozumden/fmo-deblurring-benchmark
For synthetic dataset generation, we used the publicly available implementation from DeFMO authors: https://github.com/rozumden/DeFMO/tree/master/renderer
Reference
------------
If you use this repository, please cite the following [publication](https://arxiv.org/abs/2111.14465):
```bibtex
@misc{mfb,
title = {Motion-from-Blur: 3D Shape and Motion Estimation of Motion-blurred Objects in Videos},
author = {Denys Rozumnyi and Martin R. Oswald and Vittorio Ferrari and Marc Pollefeys},
booktitle = {CVPR},
month = {Jun},
year = {2022}
}
```