Skip to content

N_P3Ch02b_AdjNonHask

rpeszek edited this page Feb 2, 2018 · 5 revisions

Markdown of literate Haskell program. Program source: /src/CTNotes/P3Ch02b_AdjNonHask.lhs

Notes about CTFP Part 3 Chapter 2. Adjunctions. Product as adjunction, non-Hask generalizations

Many interesting adjunctions cannot be expressed using only Hask endofunctors (Using Adjunction defined in CTNotes.P3Ch02a_CurryAdj). This note explores coding adjunctions using general CFunctor-s. Coding for product adjunction is provided using a custom adjunction that works between a bifunctor and a functor.

Book Ref: CTFP Part 3. Ch.2 Adjunctions

 {-# LANGUAGE  MultiParamTypeClasses
   , InstanceSigs
   , ScopedTypeVariables
   , FunctionalDependencies
   , FlexibleContexts
   , FlexibleInstances 
   #-}
 
 module CTNotes.P3Ch02b_AdjNonHask where
 import qualified CTNotes.P3Ch02a_CurryAdj as AdjHask
 import CTNotes.P1Ch08a_BiFunctorAsFunctor
 import Data.Functor.Identity
 import Prelude hiding ((.), id)
 import Control.Category (Category, (.), id)

Adjunction generalized to non-Hask categories

I have defined CFunctor in N_P1Ch07b_Functors_AcrossCats.
I am redefining it to add back functional dependencies. (avoided before to simplify things and to solve problems with Const functor, this definition matches category-extras)

 class (Category r, Category s) => CtFunctor f r s | f r -> s, f s -> r where
     cmap :: r a b -> s (f a) (f b)

Using Ch.2 naming conventions (using catc for category C hom-set and catd for category D)

          catc           catd
                   l     
          l d <-------   d
           |             |
 C(l d, c) |             | D(d, r c)
           |             |  
          \ /           \ /
           c  ------->  r c
                  r  
 class (CtFunctor l catd catc, CtFunctor r catc catd) => CtAdjunction l r catc catd  where 
     unit   :: catd d (r (l d))
     counit :: catc (l (r c)) c
     leftAdjunct  :: catc (l d) c -> catd d (r c)
     rightAdjunct :: catd d (r c) -> catc (l d) c
 
     unit = leftAdjunct id
     counit = rightAdjunct id
     leftAdjunct f = cmap f . unit
     rightAdjunct f = counit . cmap f

This generalizes Hask endofunctor adjunction:

 instance (CtFunctor l (->) (->), CtFunctor r (->) (->), AdjHask.Adjunction l r) => CtAdjunction l r (->) (->) where
    unit = AdjHask.unit
    counit = AdjHask.counit

Adjunction between functor and bifunctor

Since there are problems in defining id and creating instance of Control.Category for product Hask x Hask ((->) :**: (->)), this section defines adjunction between bifunctor and functor (C = Hask x Hask, D = Hask).

            C=Hask x Hask         D=Hask
                           l1, l2    
            (l1 d) (l2 d) <-------  d
              |       |             |
    C(l d, c) |       |             |  D(d, r c)
              |       |             |  
             \ /     \ /           \ /
             c1      c2  ------->  r c
                             r  

I use 21 to indicate product category on the left and on the right.

 class (Bifunctor r, Functor l1, Functor l2)  => Ct21Adjunction l1 l2 r | r -> l1, r -> l2, l1 l2 -> r where
     unit21 :: d -> r (l1 d) (l2 d)
     counit21_1 :: l1 (r c1 c2) -> c1  -- 2 morphism in Hask x Hask representing counit21 component
     counit21_2 :: l2 (r c1 c2) -> c2
     leftAdjunct21 :: (l1 d -> c1) -> (l2 d -> c2) -> d -> r c1 c2
     rightAdjunct21 :: (d -> r c1 c2) -> (l1 d -> c1, l2 d -> c2)
     
     unit21 = leftAdjunct21 id id
     counit21_1 = fst $ rightAdjunct21 id
     counit21_2 = snd $ rightAdjunct21 id
     leftAdjunct21 f1 f2 = bimap f1 f2 . unit21
     rightAdjunct21 f = (counit21_1 . fmap f, counit21_2 . fmap f) 

Product as adjunction

(C x C)(Δ c,<a, b>) ~= C(c, a*b)

              C=Hask x Hask     D=Hask
              
                       Identity, Identity    
                c   c  <===----   c
                |   |             |
    C(Δc,<a,b>) |   |             | D(c, a*b)
                |   |             |  
               \ / \ /           \ /
                a   b  ====---> (a, b)
                          (,)                          
 instance Ct21Adjunction Identity Identity (,) where
     leftAdjunct21 :: (Identity d -> c1) -> (Identity d -> c2) -> d -> (c1, c2)
     leftAdjunct21 dc1 dc2 d = ((dc1 . Identity) d, (dc2 . Identity) d) 
      
     rightAdjunct21 :: (d -> (c1, c2)) -> (Identity d -> c1, Identity d -> c2)
     rightAdjunct21 dc1c2 = (fst . dc1c2 . runIdentity, snd . dc1c2 . runIdentity)

Bifunctor instance of (,) was defined in N_P1Ch08a_BiFunctorAsFunctor.
Again, 21 indicates product category Hask x Hask on the left and Hask on the right.

Coproduct construction reverses arrows

C(a+b, c) ~= (C x C)(<a, b>, Δ c)

           C=Hask            D=Hask x Hask  
                     
                   Either    
           a + b <----====    a   b  
             |                |   | 
   C(a+b, c) |                |   |  D(<a, b>, Δ c)
             |                |   | 
            \ /              \ / \ /  
             c   -----===>    c   c  
         Identity, Identity