-
Notifications
You must be signed in to change notification settings - Fork 1
N_P3Ch02b_AdjNonHask
Markdown of literate Haskell program. Program source: /src/CTNotes/P3Ch02b_AdjNonHask.lhs
Many interesting adjunctions cannot be expressed using only Hask endofunctors (Using
Adjunction
defined in CTNotes.P3Ch02a_CurryAdj).
This note explores coding adjunctions using general CFunctor
-s.
Coding for product adjunction is provided using a custom adjunction that works between a
bifunctor and a functor.
Book Ref: CTFP Part 3. Ch.2 Adjunctions
{-# LANGUAGE MultiParamTypeClasses
, InstanceSigs
, ScopedTypeVariables
, FunctionalDependencies
, FlexibleContexts
, FlexibleInstances
#-}
module CTNotes.P3Ch02b_AdjNonHask where
import qualified CTNotes.P3Ch02a_CurryAdj as AdjHask
import CTNotes.P1Ch08a_BiFunctorAsFunctor
import Data.Functor.Identity
import Prelude hiding ((.), id)
import Control.Category (Category, (.), id)
I have defined CFunctor
in N_P1Ch07b_Functors_AcrossCats.
I am redefining it to add back functional dependencies.
(avoided before to simplify things and to solve problems with Const
functor,
this definition matches
category-extras)
class (Category r, Category s) => CtFunctor f r s | f r -> s, f s -> r where
cmap :: r a b -> s (f a) (f b)
Using Ch.2
naming conventions (using catc
for category C hom-set and catd
for category D)
catc catd
l
l d <------- d
| |
C(l d, c) | | D(d, r c)
| |
\ / \ /
c -------> r c
r
class (CtFunctor l catd catc, CtFunctor r catc catd) => CtAdjunction l r catc catd where
unit :: catd d (r (l d))
counit :: catc (l (r c)) c
leftAdjunct :: catc (l d) c -> catd d (r c)
rightAdjunct :: catd d (r c) -> catc (l d) c
unit = leftAdjunct id
counit = rightAdjunct id
leftAdjunct f = cmap f . unit
rightAdjunct f = counit . cmap f
This generalizes Hask endofunctor adjunction:
instance (CtFunctor l (->) (->), CtFunctor r (->) (->), AdjHask.Adjunction l r) => CtAdjunction l r (->) (->) where
unit = AdjHask.unit
counit = AdjHask.counit
Since there are problems in defining id
and creating instance of Control.Category
for product Hask x Hask ((->) :**: (->)
),
this section defines adjunction between bifunctor and functor (C = Hask x Hask, D = Hask).
C=Hask x Hask D=Hask
l1, l2
(l1 d) (l2 d) <------- d
| | |
C(l d, c) | | | D(d, r c)
| | |
\ / \ / \ /
c1 c2 -------> r c
r
I use 21
to indicate product category on the left and on the right.
class (Bifunctor r, Functor l1, Functor l2) => Ct21Adjunction l1 l2 r | r -> l1, r -> l2, l1 l2 -> r where
unit21 :: d -> r (l1 d) (l2 d)
counit21_1 :: l1 (r c1 c2) -> c1 -- 2 morphism in Hask x Hask representing counit21 component
counit21_2 :: l2 (r c1 c2) -> c2
leftAdjunct21 :: (l1 d -> c1) -> (l2 d -> c2) -> d -> r c1 c2
rightAdjunct21 :: (d -> r c1 c2) -> (l1 d -> c1, l2 d -> c2)
unit21 = leftAdjunct21 id id
counit21_1 = fst $ rightAdjunct21 id
counit21_2 = snd $ rightAdjunct21 id
leftAdjunct21 f1 f2 = bimap f1 f2 . unit21
rightAdjunct21 f = (counit21_1 . fmap f, counit21_2 . fmap f)
(C x C)(Δ c,<a, b>) ~= C(c, a*b)
C=Hask x Hask D=Hask
Identity, Identity
c c <===---- c
| | |
C(Δc,<a,b>) | | | D(c, a*b)
| | |
\ / \ / \ /
a b ====---> (a, b)
(,)
instance Ct21Adjunction Identity Identity (,) where
leftAdjunct21 :: (Identity d -> c1) -> (Identity d -> c2) -> d -> (c1, c2)
leftAdjunct21 dc1 dc2 d = ((dc1 . Identity) d, (dc2 . Identity) d)
rightAdjunct21 :: (d -> (c1, c2)) -> (Identity d -> c1, Identity d -> c2)
rightAdjunct21 dc1c2 = (fst . dc1c2 . runIdentity, snd . dc1c2 . runIdentity)
Bifunctor instance of (,)
was defined in N_P1Ch08a_BiFunctorAsFunctor.
Again, 21
indicates product category Hask x Hask on the left and Hask
on the right.
Coproduct construction reverses arrows
C(a+b, c) ~= (C x C)(<a, b>, Δ c)
C=Hask D=Hask x Hask
Either
a + b <----==== a b
| | |
C(a+b, c) | | | D(<a, b>, Δ c)
| | |
\ / \ / \ /
c -----===> c c
Identity, Identity