- ANTs (tested with version 2.3.3.dev168-g29bdf)
- Python 3.7
- Clone this repository and install its requirements:
git clone https://github.com/rrsg2020/analysis.git rrsg2020/analysis cd rrsg2020/analysis pip install -r requirements.txt
Run the commands:
python make_pooled_datasets.py configs/3T_NIST_T1maps.json 3T_NIST_T1maps
python make_pooled_datasets.py configs/3T_NIST.json 3T_NIST
Note: Labels and a phantom mask are already included in the T1 map OSF dataset
Run the registration script:
python register_t1maps_nist.py -j configs/3T_NIST.json -p 3T_NIST_pooled/ 3T_NIST_T1maps_pooled/
Note: the registration script will download the reference mask (e.g. for the NIST phantom) and will create labels for the initial affine transformation.
- Requirement: Miniforge for OSX arm64
conda env create -f environment_ARM.yml
conda activate analysis_arm
python setup_ARM.py install
python -m ipykernel install --user --name=analysis_arm
pytest