-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMoG.py
92 lines (64 loc) · 3.09 KB
/
MoG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from os.path import join
import torch
import torch.nn as nn
import torch.optim as optim
from torch import autograd
from models.gan import Gen, Dis
from utils.plot import plot_eigens, plot_kde
from utils.utils import batch_net_outputs, net_losses
#Parameters
z_dim = 16
gamma = 10.0
lr = 1e-4
sigma = 1e-2
steps = 20000
batch_size = 512
method = 'ConsOpt' #'SimGA' #'ConsOpt'
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
path = '/home/mila/r/rohan.sukumaran/repos/TheNumericsofGANs_pytorch/results/'
if __name__ == "__main__":
gen_net = Gen(16, 2).to(device)
disc_net = Dis(2, 1).to(device)
params = list(gen_net.parameters()) + list(disc_net.parameters())
gen_opt = optim.RMSprop(gen_net.parameters(), lr=lr)
disc_opt = optim.RMSprop(disc_net.parameters(), lr=lr)
criterion = nn.BCEWithLogitsLoss()
for i in range(steps+1):
gen_out, real_in, fake_d_out_gen, fake_d_out_disc, fake_d_out, real_d_out = batch_net_outputs(gen_net, disc_net, batch_size, z_dim, sigma, device)
gen_loss_detached, disc_loss_detached, gen_loss, disc_loss = net_losses(criterion, fake_d_out_gen, fake_d_out_disc, fake_d_out, real_d_out)
if i==0:
plot_kde(0,method, sigma, gen_net, path, device, batch_size, z_dim, real_input=True)
if i%5000 == 0:
if method == 'ConsOpt':
plot_eigens(i, gen_net, disc_net, params, gamma, path, batch_size, z_dim, sigma, criterion, device)
plot_kde(i, method, sigma, gen_net, path, device, batch_size, z_dim, real_input=False)
gen_path = join(path, 'Models', 'gen_' + method + "_" + str(i) + '.pt')
disc_path = join(path, 'Models', 'disc_'+ method + "_" + str(i) + '.pt')
torch.save(gen_net.state_dict(), gen_path)
torch.save(disc_net.state_dict(), disc_path)
if method == 'ConsOpt':
gen_net.zero_grad()
gen_grad = autograd.grad(gen_loss, gen_net.parameters(), retain_graph=True, create_graph=True)
disc_net.zero_grad()
disc_grad = autograd.grad(disc_loss, disc_net.parameters(), retain_graph=True, create_graph=True)
v = list(gen_grad) + list(disc_grad)
v = torch.cat([t.flatten() for t in v])
L = 1/2 * torch.dot(v, v)
jgrads = autograd.grad(L, params, retain_graph=True)
gen_opt.zero_grad()
for i in range(len(params)):
params[i].grad = jgrads[i] * gamma
gen_loss_detached.backward(retain_graph=True, create_graph=True)
gen_opt.step()
disc_opt.zero_grad()
for i in range(len(params)):
params[i].grad = jgrads[i] * gamma
disc_loss_detached.backward(retain_graph=True, create_graph=True)
disc_opt.step()
else:
gen_opt.zero_grad()
gen_loss_detached.backward(retain_graph=True, create_graph=True)
gen_opt.step()
disc_opt.zero_grad()
disc_loss_detached.backward(retain_graph=True, create_graph=True)
disc_opt.step()