-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathREADME.Rmd
74 lines (53 loc) · 2.05 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# report
> Generate reports from Rsquared Academy packages
[![CRAN\_Status\_Badge](http://www.r-pkg.org/badges/version/report)](https://cran.r-project.org/package=report)
[![Travis-CI Build Status](https://travis-ci.org/rsquaredacademy/report.svg?branch=master)](https://travis-ci.org/rsquaredacademy/report) [![AppVeyor Build Status](https://ci.appveyor.com/api/projects/status/github/rsquaredacademy/report?branch=master&svg=true)](https://ci.appveyor.com/project/aravindhebbali/reports) ![](https://img.shields.io/badge/lifecycle-experimental-orange.svg)
The goal of report is to generate automated reports for summary statistics,
RFM analysis, linear and logistic regression using the following packages:
- [descriptr](https://descriptr.rsquaredacademy.com)
- [rfm](https://rfm.rsquaredacademy.com)
- [olsrr](https://olsrr.rsquaredacademy.com)
- [blorr](https://blorr.rsquaredacademy.com)
## Installation
``` r
# Install development version from GitHub
# install.packages("devtools")
devtools::install_github("rsquaredacademy/report")
```
## Usage
Before generating the reports, it is important to ensure that the data used in the report is defined in the current session i.e. when you run `ls()` in the console, the data must be listed by R.
### Summary Statistics
```{r descriptr, eval=FALSE}
library(descriptr)
report_descriptr()
```
### RFM Analysis
```{r rfm, eval=FALSE}
rfm_data <- rfm::rfm_data_orders
report_rfm()
```
### Linear Regression
```{r olsrr, eval=FALSE}
model_data <- descriptr::mtcarz
report_ols()
```
### Logistic Regression
```{r blorr, eval=FALSE}
model_data <- blorr::bank_marketing
report_blr()
```
## Community Guidelines
Please note that this project is released with a [Contributor Code of Conduct](CODE_OF_CONDUCT.md).
By participating in this project you agree to abide by its terms.