-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.R
190 lines (163 loc) · 7.63 KB
/
main.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
library(data.table)
library(fst)
library(parallel)
library(R.utils) # needed for fread to read .gz files
library(vroom)
source("_functions.R")
benchmark_begin()
dir.create(target("lib"), recursive = TRUE, showWarnings = FALSE)
# Install common R packages =====================================================================================
benchmark("Install MASS", time_install("MASS", lib = target("lib")))
benchmark("Install lattice", time_install("lattice", lib = target("lib")))
benchmark("Install BH", time_install("BH", lib = target("lib")))
utils::remove.packages(c("MASS", "lattice", "BH"), lib = target("lib"))
unlink(target("lib"), recursive = TRUE)
# ===============================================================================================================
# Write, then read, 1GB CSV =====================================================================================
benchmark("Write CSV, 10KB", write_random_csv(target("10kb.csv"), 10*1024))
benchmark("Write CSV, 1MB", write_random_csv(target("1mb.csv"), 1024*1024))
benchmark("Write CSV, 100MB", write_random_csv(target("100mb.csv"), 100*1024*1024))
benchmark("Write CSV, 1GB", write_random_csv(target("1gb.csv"), 1024*1024*1024))
benchmark("Read CSV, 10KB", system.time({ data.table::fread(target("10kb.csv")) }))
benchmark("Read CSV, 1MB", system.time({ data.table::fread(target("1mb.csv")) }))
benchmark("Read CSV, 100MB", system.time({ data.table::fread(target("100mb.csv")) }))
benchmark("Read CSV, 1GB", system.time({ data.table::fread(target("1gb.csv")) }))
unlink(target("10kb.csv"))
unlink(target("1mb.csv"))
unlink(target("100mb.csv"))
unlink(target("1gb.csv"))
# ===============================================================================================================
# Parallel tests with 1GB readers/writers =======================================================================
for (i in 1:4) {
num_writers <- 2^i
benchmark("DD write, 1GB", system.time({
mclapply(1:num_writers, function(id) {
file <- target(sprintf("parallel_%d.dat", id))
command <- sprintf("dd if=/dev/zero of=%s bs=1048576 count=1024 conv=sync oflag=nocache", file)
system(command)
}, mc.preschedule = FALSE, mc.cores = num_writers)
}), parallelism = num_writers)
}
for (i in 1:4) {
num_readers <- 2^i
benchmark("DD read, 1GB", system.time({
mclapply(1:num_readers, function(id) {
file <- target(sprintf("parallel_%d.dat", id))
command <- sprintf("dd if=%s of=/dev/null bs=1048576 count=1024 iflag=nocache", file)
system(command)
}, mc.preschedule = FALSE, mc.cores = num_readers)
}), parallelism = num_readers)
}
unlink(target("parallel_*.dat"))
# ===============================================================================================================
# Small files tests =============================================================================================
for (i in 1:4) {
num_files <- 10 ^ i
file_size <- 100*1024*1024 / num_files
aggregate_benchmark(sprintf("Write CSV, 100MB over %s files", num_files), num_files, function(iter) {
write_static_csv(target(sprintf("small_%s.csv", iter)), num_files, iter)
})
aggregate_benchmark(sprintf("Read CSV, 100MB over %s files", num_files), num_files, function(iter) {
data.table::fread(target(sprintf("small_%s.csv", iter)))
})
for (j in 1:num_files) {
unlink(target(sprintf("small_%s.csv", j)))
}
}
# ===============================================================================================================
# Parallel small file tests =====================================================================================
for (i in 1:4) {
num_writers <- 2^i
benchmark("DD write, 10MB over 1000 files", system.time({
mclapply(1:num_writers, function(id) {
for (j in 1:1000) {
file <- target(sprintf("small-parallel_%d_%d.dat", id, j))
command <- sprintf("dd if=/dev/zero of=%s bs=1024 count=10 conv=sync oflag=nocache", file)
system(command, ignore.stdout = TRUE, ignore.stderr = TRUE)
}
}, mc.preschedule = FALSE, mc.cores = num_writers)
}), parallelism = num_writers)
}
for (i in 1:4) {
num_readers <- 2^i
benchmark("DD read, 10MB over 1000 files", system.time({
mclapply(1:num_readers, function(id) {
for (j in 1:1000) {
file <- target(sprintf("small-parallel_%d_%d.dat", id, j))
command <- sprintf("dd if=%s of=/dev/null bs=1024 count=10 iflag=nocache", file)
system(command, ignore.stdout = TRUE, ignore.stderr = TRUE)
}
}, mc.preschedule = FALSE, mc.cores = num_readers)
}), parallelism = num_readers)
}
unlink(target("small-parallel_*.dat"))
# ===============================================================================================================
# FST tests =====================================================================================================
# Generate a random data frame (approximately 1GB of data), save it to disk,
# then perform random read tests of different lengths on the file
size_100mb <- 100*1024*1024
num_rows <- 0.0625 * size_100mb
size_per_row <- size_100mb / num_rows
fst_frame <- data.frame(x1 = runif(num_rows), x2 = runif(num_rows))
write.fst(fst_frame, target("dataset.fst"))
num_read <- 0
benchmark("FST random reads, 100MB over 10*10MB reads", system.time({
rows_to_read <- (10*1024*1024) / size_per_row
while (num_read < size_100mb) {
from <- runif(1, 0, num_rows - rows_to_read)
to <- from + rows_to_read
fst_subset <- read.fst(target("dataset.fst"), NULL, from, to)
num_read <- num_read + object.size(fst_subset)
}
}))
num_read <- 0
benchmark("FST random reads, 100MB over 100*1MB reads", system.time({
rows_to_read <- (1*1024*1024) / size_per_row
while (num_read < size_100mb) {
from <- runif(1, 0, num_rows - rows_to_read)
to <- from + rows_to_read
fst_subset <- read.fst(target("dataset.fst"), NULL, from, to)
num_read <- num_read + object.size(fst_subset)
}
}))
num_read <- 0
benchmark("FST random reads, 100MB over 1000*100KB reads", system.time({
rows_to_read <- (100*1024) / size_per_row
while (num_read < size_100mb) {
from <- runif(1, 0, num_rows - rows_to_read)
to <- from + rows_to_read
fst_subset <- read.fst(target("dataset.fst"), NULL, from, to)
num_read <- num_read + object.size(fst_subset)
}
}))
num_read <- 0
benchmark("FST random reads, 100MB over 10000*10KB reads", system.time({
rows_to_read <- (10*1024) / size_per_row
while (num_read < size_100mb) {
from <- runif(1, 0, num_rows - rows_to_read)
to <- from + rows_to_read
fst_subset <- read.fst(target("dataset.fst"), NULL, from, to)
num_read <- num_read + object.size(fst_subset)
}
}))
unlink(target("dataset.fst"))
#================================================================================================================
# Read CRAN logs ================================================================================================
benchmark("Read 14 days of CRAN logs with fread", system.time({
for (file in sort(dir(target("cranlogs"), full.names = TRUE))) {
message(basename(file))
fread_df <- data.table::fread(file, showProgress = FALSE)
table(fread_df$country)
}
}))
benchmark("Sample 5000 rows from each of 14 CRAN logs with vroom", system.time({
for (file in sort(dir(target("cranlogs"), full.names = TRUE))) {
message(basename(file))
vroom_df <- vroom(file, progress = FALSE, col_types = "Dtdccccccd",
col_names = c("date","time","size","r_version","r_arch","r_os","package","version","country","ip_id")
)
sample(vroom_df$country, 5000)
}
}))
# ===============================================================================================================
benchmark_end()