-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
133 lines (102 loc) · 4.41 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import config
import dataloader
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
from tqdm import tqdm
from dataloader import loader
from model import akbhd, vatch, drklrd, mdl
from utils import save_ckp, plot
scaler = torch.cuda.amp.GradScaler()
def train_model(model, dataloaders, criterion, optimizer, scheduler, dataset_sizes, checkpoint_path, num_epochs=25):
print(f"saving to {checkpoint_path}")
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0
loss_p = {'train':[],'val':[]}
acc_p = {'train':[],'val':[]}
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
tk = tqdm(dataloaders[phase], total=len(dataloaders[phase]))
for inputs, labels in tk:
inputs = inputs.to(config.DEVICE)
labels = labels.to(config.DEVICE)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
# loss.backward()
# optimizer.step()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
# torch.cuda.empty_cache()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
# print("running loss ",running_loss)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
loss_p[phase].append(epoch_loss)
acc_p[phase].append(epoch_acc)
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
checkpoint = {
'epoch': epoch,
'valid_acc': best_acc,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
# checkpoint_path = "/content/drive/MyDrive/competitions/mosaic-r1/weights/res18.pt"
print(f"saving to {checkpoint_path}")
save_ckp(checkpoint, checkpoint_path)
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
plot(loss_p,acc_p,num_epochs)
return model, best_acc
if __name__ == '__main__':
dataloaders,dataset_sizes = loader(use_pretrained=True)
model_ft = mdl("res34")
# model_ft = drklrd()
model_ft = model_ft.to(config.DEVICE)
criterion = nn.CrossEntropyLoss()
optimizer_ft = optim.Adam(model_ft.parameters(), lr=0.0001)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
checkpoint_path = "/content/drive/MyDrive/competitions/mosaic-r1/weights/res34_albu_26.pt"
model_ft, best_acc = train_model(model_ft, dataloaders, criterion, optimizer_ft, exp_lr_scheduler, dataset_sizes, checkpoint_path, num_epochs=config.NUM_EPOCHS)