-
Notifications
You must be signed in to change notification settings - Fork 939
/
latent_ode.py
338 lines (282 loc) · 11.7 KB
/
latent_ode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import os
import argparse
import logging
import time
import numpy as np
import numpy.random as npr
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
parser = argparse.ArgumentParser()
parser.add_argument('--adjoint', type=eval, default=False)
parser.add_argument('--visualize', type=eval, default=False)
parser.add_argument('--niters', type=int, default=2000)
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--train_dir', type=str, default=None)
args = parser.parse_args()
if args.adjoint:
from torchdiffeq import odeint_adjoint as odeint
else:
from torchdiffeq import odeint
def generate_spiral2d(nspiral=1000,
ntotal=500,
nsample=100,
start=0.,
stop=1, # approximately equal to 6pi
noise_std=.1,
a=0.,
b=1.,
savefig=True):
"""Parametric formula for 2d spiral is `r = a + b * theta`.
Args:
nspiral: number of spirals, i.e. batch dimension
ntotal: total number of datapoints per spiral
nsample: number of sampled datapoints for model fitting per spiral
start: spiral starting theta value
stop: spiral ending theta value
noise_std: observation noise standard deviation
a, b: parameters of the Archimedean spiral
savefig: plot the ground truth for sanity check
Returns:
Tuple where first element is true trajectory of size (nspiral, ntotal, 2),
second element is noisy observations of size (nspiral, nsample, 2),
third element is timestamps of size (ntotal,),
and fourth element is timestamps of size (nsample,)
"""
# add 1 all timestamps to avoid division by 0
orig_ts = np.linspace(start, stop, num=ntotal)
samp_ts = orig_ts[:nsample]
# generate clock-wise and counter clock-wise spirals in observation space
# with two sets of time-invariant latent dynamics
zs_cw = stop + 1. - orig_ts
rs_cw = a + b * 50. / zs_cw
xs, ys = rs_cw * np.cos(zs_cw) - 5., rs_cw * np.sin(zs_cw)
orig_traj_cw = np.stack((xs, ys), axis=1)
zs_cc = orig_ts
rw_cc = a + b * zs_cc
xs, ys = rw_cc * np.cos(zs_cc) + 5., rw_cc * np.sin(zs_cc)
orig_traj_cc = np.stack((xs, ys), axis=1)
if savefig:
plt.figure()
plt.plot(orig_traj_cw[:, 0], orig_traj_cw[:, 1], label='clock')
plt.plot(orig_traj_cc[:, 0], orig_traj_cc[:, 1], label='counter clock')
plt.legend()
plt.savefig('./ground_truth.png', dpi=500)
print('Saved ground truth spiral at {}'.format('./ground_truth.png'))
# sample starting timestamps
orig_trajs = []
samp_trajs = []
for _ in range(nspiral):
# don't sample t0 very near the start or the end
t0_idx = npr.multinomial(
1, [1. / (ntotal - 2. * nsample)] * (ntotal - int(2 * nsample)))
t0_idx = np.argmax(t0_idx) + nsample
cc = bool(npr.rand() > .5) # uniformly select rotation
orig_traj = orig_traj_cc if cc else orig_traj_cw
orig_trajs.append(orig_traj)
samp_traj = orig_traj[t0_idx:t0_idx + nsample, :].copy()
samp_traj += npr.randn(*samp_traj.shape) * noise_std
samp_trajs.append(samp_traj)
# batching for sample trajectories is good for RNN; batching for original
# trajectories only for ease of indexing
orig_trajs = np.stack(orig_trajs, axis=0)
samp_trajs = np.stack(samp_trajs, axis=0)
return orig_trajs, samp_trajs, orig_ts, samp_ts
class LatentODEfunc(nn.Module):
def __init__(self, latent_dim=4, nhidden=20):
super(LatentODEfunc, self).__init__()
self.elu = nn.ELU(inplace=True)
self.fc1 = nn.Linear(latent_dim, nhidden)
self.fc2 = nn.Linear(nhidden, nhidden)
self.fc3 = nn.Linear(nhidden, latent_dim)
self.nfe = 0
def forward(self, t, x):
self.nfe += 1
out = self.fc1(x)
out = self.elu(out)
out = self.fc2(out)
out = self.elu(out)
out = self.fc3(out)
return out
class RecognitionRNN(nn.Module):
def __init__(self, latent_dim=4, obs_dim=2, nhidden=25, nbatch=1):
super(RecognitionRNN, self).__init__()
self.nhidden = nhidden
self.nbatch = nbatch
self.i2h = nn.Linear(obs_dim + nhidden, nhidden)
self.h2o = nn.Linear(nhidden, latent_dim * 2)
def forward(self, x, h):
combined = torch.cat((x, h), dim=1)
h = torch.tanh(self.i2h(combined))
out = self.h2o(h)
return out, h
def initHidden(self):
return torch.zeros(self.nbatch, self.nhidden)
class Decoder(nn.Module):
def __init__(self, latent_dim=4, obs_dim=2, nhidden=20):
super(Decoder, self).__init__()
self.relu = nn.ReLU(inplace=True)
self.fc1 = nn.Linear(latent_dim, nhidden)
self.fc2 = nn.Linear(nhidden, obs_dim)
def forward(self, z):
out = self.fc1(z)
out = self.relu(out)
out = self.fc2(out)
return out
class RunningAverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, momentum=0.99):
self.momentum = momentum
self.reset()
def reset(self):
self.val = None
self.avg = 0
def update(self, val):
if self.val is None:
self.avg = val
else:
self.avg = self.avg * self.momentum + val * (1 - self.momentum)
self.val = val
def log_normal_pdf(x, mean, logvar):
const = torch.from_numpy(np.array([2. * np.pi])).float().to(x.device)
const = torch.log(const)
return -.5 * (const + logvar + (x - mean) ** 2. / torch.exp(logvar))
def normal_kl(mu1, lv1, mu2, lv2):
v1 = torch.exp(lv1)
v2 = torch.exp(lv2)
lstd1 = lv1 / 2.
lstd2 = lv2 / 2.
kl = lstd2 - lstd1 + ((v1 + (mu1 - mu2) ** 2.) / (2. * v2)) - .5
return kl
if __name__ == '__main__':
latent_dim = 4
nhidden = 20
rnn_nhidden = 25
obs_dim = 2
nspiral = 1000
start = 0.
stop = 6 * np.pi
noise_std = .3
a = 0.
b = .3
ntotal = 1000
nsample = 100
device = torch.device('cuda:' + str(args.gpu)
if torch.cuda.is_available() else 'cpu')
# generate toy spiral data
orig_trajs, samp_trajs, orig_ts, samp_ts = generate_spiral2d(
nspiral=nspiral,
start=start,
stop=stop,
noise_std=noise_std,
a=a, b=b
)
orig_trajs = torch.from_numpy(orig_trajs).float().to(device)
samp_trajs = torch.from_numpy(samp_trajs).float().to(device)
samp_ts = torch.from_numpy(samp_ts).float().to(device)
# model
func = LatentODEfunc(latent_dim, nhidden).to(device)
rec = RecognitionRNN(latent_dim, obs_dim, rnn_nhidden, nspiral).to(device)
dec = Decoder(latent_dim, obs_dim, nhidden).to(device)
params = (list(func.parameters()) + list(dec.parameters()) + list(rec.parameters()))
optimizer = optim.Adam(params, lr=args.lr)
loss_meter = RunningAverageMeter()
if args.train_dir is not None:
if not os.path.exists(args.train_dir):
os.makedirs(args.train_dir)
ckpt_path = os.path.join(args.train_dir, 'ckpt.pth')
if os.path.exists(ckpt_path):
checkpoint = torch.load(ckpt_path)
func.load_state_dict(checkpoint['func_state_dict'])
rec.load_state_dict(checkpoint['rec_state_dict'])
dec.load_state_dict(checkpoint['dec_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
orig_trajs = checkpoint['orig_trajs']
samp_trajs = checkpoint['samp_trajs']
orig_ts = checkpoint['orig_ts']
samp_ts = checkpoint['samp_ts']
print('Loaded ckpt from {}'.format(ckpt_path))
try:
for itr in range(1, args.niters + 1):
optimizer.zero_grad()
# backward in time to infer q(z_0)
h = rec.initHidden().to(device)
for t in reversed(range(samp_trajs.size(1))):
obs = samp_trajs[:, t, :]
out, h = rec.forward(obs, h)
qz0_mean, qz0_logvar = out[:, :latent_dim], out[:, latent_dim:]
epsilon = torch.randn(qz0_mean.size()).to(device)
z0 = epsilon * torch.exp(.5 * qz0_logvar) + qz0_mean
# forward in time and solve ode for reconstructions
pred_z = odeint(func, z0, samp_ts).permute(1, 0, 2)
pred_x = dec(pred_z)
# compute loss
noise_std_ = torch.zeros(pred_x.size()).to(device) + noise_std
noise_logvar = 2. * torch.log(noise_std_).to(device)
logpx = log_normal_pdf(
samp_trajs, pred_x, noise_logvar).sum(-1).sum(-1)
pz0_mean = pz0_logvar = torch.zeros(z0.size()).to(device)
analytic_kl = normal_kl(qz0_mean, qz0_logvar,
pz0_mean, pz0_logvar).sum(-1)
loss = torch.mean(-logpx + analytic_kl, dim=0)
loss.backward()
optimizer.step()
loss_meter.update(loss.item())
print('Iter: {}, running avg elbo: {:.4f}'.format(itr, -loss_meter.avg))
except KeyboardInterrupt:
if args.train_dir is not None:
ckpt_path = os.path.join(args.train_dir, 'ckpt.pth')
torch.save({
'func_state_dict': func.state_dict(),
'rec_state_dict': rec.state_dict(),
'dec_state_dict': dec.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'orig_trajs': orig_trajs,
'samp_trajs': samp_trajs,
'orig_ts': orig_ts,
'samp_ts': samp_ts,
}, ckpt_path)
print('Stored ckpt at {}'.format(ckpt_path))
print('Training complete after {} iters.'.format(itr))
if args.visualize:
with torch.no_grad():
# sample from trajectorys' approx. posterior
h = rec.initHidden().to(device)
for t in reversed(range(samp_trajs.size(1))):
obs = samp_trajs[:, t, :]
out, h = rec.forward(obs, h)
qz0_mean, qz0_logvar = out[:, :latent_dim], out[:, latent_dim:]
epsilon = torch.randn(qz0_mean.size()).to(device)
z0 = epsilon * torch.exp(.5 * qz0_logvar) + qz0_mean
orig_ts = torch.from_numpy(orig_ts).float().to(device)
# take first trajectory for visualization
z0 = z0[0]
ts_pos = np.linspace(0., 2. * np.pi, num=2000)
ts_neg = np.linspace(-np.pi, 0., num=2000)[::-1].copy()
ts_pos = torch.from_numpy(ts_pos).float().to(device)
ts_neg = torch.from_numpy(ts_neg).float().to(device)
zs_pos = odeint(func, z0, ts_pos)
zs_neg = odeint(func, z0, ts_neg)
xs_pos = dec(zs_pos)
xs_neg = torch.flip(dec(zs_neg), dims=[0])
xs_pos = xs_pos.cpu().numpy()
xs_neg = xs_neg.cpu().numpy()
orig_traj = orig_trajs[0].cpu().numpy()
samp_traj = samp_trajs[0].cpu().numpy()
plt.figure()
plt.plot(orig_traj[:, 0], orig_traj[:, 1],
'g', label='true trajectory')
plt.plot(xs_pos[:, 0], xs_pos[:, 1], 'r',
label='learned trajectory (t>0)')
plt.plot(xs_neg[:, 0], xs_neg[:, 1], 'c',
label='learned trajectory (t<0)')
plt.scatter(samp_traj[:, 0], samp_traj[
:, 1], label='sampled data', s=3)
plt.legend()
plt.savefig('./vis.png', dpi=500)
print('Saved visualization figure at {}'.format('./vis.png'))