-
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
588 lines (463 loc) · 21 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
import streamlit as st
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from PIL import Image
####################
# Load data
####################
@st.cache
def load_data(dataset='beijing'):
if dataset == 'beijing':
data_loc = 'data/beijing_taxi_data_30k.csv'
colnames=['latitude', 'longitude']
data = pd.read_csv(data_loc, sep=',', names=colnames, header=None)
data = data[data['latitude']>116.18]
data = data[data['latitude']<116.65]
data = data[data['longitude']>39.6]
data = data[data['longitude']<40.2]
x, y = data['longitude'].values, data['latitude'].values
elif dataset == 'gowalla':
data_loc = 'data/gowalla_1-8.txt'
colnames=['user', 'check-in time', 'latitude', 'longitude', 'location id']
data = pd.read_csv(data_loc, sep='\t', names=colnames, header=None)
data = data[data['latitude']<180] # remove the 29 invalid outlier points with at latitude>180
x, y = data['longitude'].values, data['latitude'].values
else:
raise ValueError(dataset+' is not a valid data set! Choose a valid one.')
return x, y
####################
# Main algorithms
####################
def simple_tree(x, y, lam=2, theta=100, h=10, domain_margin=1e-2, plot=False, seed=7):
# simple tree parameters
#x, y = data['longitude'].values, data['latitude'].values
#lam = laplace noise parameter
#theta = 50 #min count per domain
#h = 10 # max tree depth
np.random.seed(seed)
#initialise counters and holders
domains = []
unvisited_domains = []
counts = []
noisy_counts = []
tree_depth = 0
# data limits
x_min, x_max = np.min(x), np.max(x)
y_min, y_max = np.min(y), np.max(y)
# root domain
v0 = [x_min, y_min, y_max+domain_margin, x_max+domain_margin] # +margin around borders to include all points
#domains.append(v0)
unvisited_domains.append(v0)
#tree_depth += 1
#print('tree root initialised.')
# create subdomains where necessary
while not not unvisited_domains: # while unvisited_domains is not empty
for unvisited in unvisited_domains:
# calculate count and noisy count
count = count_in_domain(x, y, unvisited)
noisy_count = count + laplace_noise(lam)
if (noisy_count > theta) and (tree_depth < h): #split if conditions are met
v1, v2, v3, v4 = get_domain_subdomains(unvisited)
# mark new domains as unvisited
unvisited_domains.append(v1)
unvisited_domains.append(v2)
unvisited_domains.append(v3)
unvisited_domains.append(v4)
# remove domain that was just visited and split
unvisited_domains.remove(unvisited)
# add to tree depth
tree_depth += 1
#print('*** domain split ***')
#print('\ttree depth: {:d}'.format(tree_depth))
else:
# remove domain that was just visited
unvisited_domains.remove(unvisited)
# record count and noisy count
counts.append(count)
# add domain to final domains
noisy_counts.append(noisy_count)
domains.append(unvisited)
#print('domain visited but not split.')
if plot:
# plot location points:
fig, ax = plot_locations_xy(x, y)
# plot all domains
for domain in domains:
plot_rect(ax, domain[0], domain[1], domain[2], domain[3])
# adjust plot limits to fit everything
v0_h = v0[2] - v0[1]
v0_w = v0[3] - v0[0]
ax.set_xlim(v0[0]-0.05*v0_w, v0[3]+0.05*v0_w)
ax.set_ylim(v0[1]-0.05*v0_h, v0[2]+0.05*v0_h);
else:
fig = None
ax = None
return domains, noisy_counts, counts, tree_depth, fig, ax
def priv_tree(x, y, lam=2, theta=100, delta=10, domain_margin=1e-2, plot=False, seed=7):
# simple tree parameters
#x, y = data['longitude'].values, data['latitude'].values
#lam = laplace noise parameter
#theta = 50 #min count per domain
#h = 10 # max tree depth
np.random.seed(seed)
#initialise counters and holders
domains = []
unvisited_domains = []
counts = []
noisy_counts = []
tree_depth = 0
# data limits
x_min, x_max = np.min(x), np.max(x)
y_min, y_max = np.min(y), np.max(y)
# root domain
v0 = [x_min, y_min, y_max+domain_margin, x_max+domain_margin] # +margin around borders to include all points
#domains.append(v0)
unvisited_domains.append(v0)
#tree_depth += 1
#print('tree root initialised.')
# create subdomains where necessary
while not not unvisited_domains: # while unvisited_domains is not empty
for unvisited in unvisited_domains:
# calculate count and noisy count
count = count_in_domain(x, y, unvisited)
b = count - (delta*tree_depth)
b = max(b, (theta - delta))
noisy_b = b + laplace_noise(lam)
if (noisy_b > theta): #split if condition is met
v1, v2, v3, v4 = get_domain_subdomains(unvisited)
# mark new domains as unvisited
unvisited_domains.append(v1)
unvisited_domains.append(v2)
unvisited_domains.append(v3)
unvisited_domains.append(v4)
# remove domain that was just visited and split
unvisited_domains.remove(unvisited)
# add to tree depth
tree_depth += 1
#print('*** domain split ***')
#print('\ttree depth: {:d}'.format(tree_depth))
else:
# remove domain that was just visited
unvisited_domains.remove(unvisited)
# record count and noisy count
counts.append(count)
# add domain to final domains
noisy_counts.append(noisy_b)
domains.append(unvisited)
#print('domain visited but not split.')
if plot:
# plot location points:
fig, ax = plot_locations_xy(x, y)
# plot all domains
for domain in domains:
plot_rect(ax, domain[0], domain[1], domain[2], domain[3])
# adjust plot limits to fit everything
v0_h = v0[2] - v0[1]
v0_w = v0[3] - v0[0]
ax.set_xlim(v0[0]-0.05*v0_w, v0[3]+0.05*v0_w)
ax.set_ylim(v0[1]-0.05*v0_h, v0[2]+0.05*v0_h);
else:
fig = None
ax = None
return domains, noisy_counts, counts, tree_depth, fig, ax
def uniform_grid(x, y, m=5, lam=2, domain_margin=1e-2, plot=False, seed=7):
# uniform grid parameters
#x, y = data['longitude'].values, data['latitude'].values
#lam = laplace noise parameter
np.random.seed(seed)
#initialise counters and holders
domains = []
counts = []
noisy_counts = []
# data limits
x_min, x_max = np.min(x), np.max(x)
y_min, y_max = np.min(y), np.max(y)
# root domain
# domain format = [left, bottom, top, right]
v0 = [x_min, y_min, y_max+domain_margin, x_max+domain_margin] # +margin around borders to include all points
w = (v0[3] - v0[0])/m # width of uniform grid cells
h = (v0[2] - v0[1])/m # height of uniform grid cells
# divide root domain into mxm subdomains
for row in range(m):
for col in range(m):
new_v = [v0[0]+(col*w), v0[1]+(row*h) , v0[1]+(row*h)+h , v0[0]+(col*w)+w]
domains.append(new_v)
for dom in domains:
count = count_in_domain(x, y, dom)
noisy_count = count + laplace_noise(lam)
counts.append(count)
noisy_counts.append(noisy_count)
if plot:
# plot location points:
fig, ax = plot_locations_xy(x, y)
# plot all domains
for domain in domains:
plot_rect(ax, domain[0], domain[1], domain[2], domain[3])
# adjust plot limits to fit everything
v0_h = v0[2] - v0[1]
v0_w = v0[3] - v0[0]
ax.set_xlim(v0[0]-0.05*v0_w, v0[3]+0.05*v0_w)
ax.set_ylim(v0[1]-0.05*v0_h, v0[2]+0.05*v0_h);
else:
fig = None
ax = None
return domains, noisy_counts, counts, fig, ax
####################
# Helper functions
####################
def plot_locations_xy(x, y, alpha=0.3, marker='o', marker_size=5, figsize=(16,8), save_plot_dir=None, dpi=250):
fig, ax = plt.subplots(figsize=figsize)
ax.set_aspect('equal')
ax.scatter(x, y,alpha=alpha, marker=marker, s=marker_size)
ax.set_xlabel('longitude')
ax.set_ylabel('latitude')
ax.grid(alpha=0.8,linewidth=0.5);
if not (save_plot_dir == None):
plt.savefig(save_plot_dir,dpi=dpi)
return fig, ax
def plot_rect(ax, left, bottom, top, right, fill=False, color='r', edgecolor='r', alpha=1, hatch=None):
p = plt.Rectangle((left, bottom), right-left, top-bottom, fill=fill, color=color, edgecolor=edgecolor, alpha=alpha, hatch=hatch)
ax.add_patch(p)
def plot_q_grid(ax, x_min, y_min, y_max, x_max, fill=False, edgecolor='r', alpha=1, hatch=None):
# -----------
# | q1 | q2 |
# -----------
# | q3 | q4 |
# -----------
width = x_max - x_min
height = y_max - y_min
# q1
plot_rect(ax, x_min, y_min+height/2, y_max, x_min+width/2, fill=fill, edgecolor=edgecolor, alpha=alpha, hatch=hatch)
# q2
plot_rect(ax, x_min+width/2, y_min+height/2, y_max, x_max, fill=fill, edgecolor=edgecolor, alpha=alpha, hatch=hatch)
# q3
plot_rect(ax, x_min, y_min, y_min+height/2,x_max-width/2, fill=fill, edgecolor=edgecolor, alpha=alpha, hatch=hatch)
# q4
plot_rect(ax, x_min+width/2, y_min, y_min+height/2, x_max, fill=fill, edgecolor=edgecolor, alpha=alpha, hatch=hatch)
def is_in_domain(x, y, left, bottom, top, right): #includes left and bottom border
if (x >= left) and (x < right) and (y < top) and (y >= bottom):
return True
else:
return False
def is_domain_partially_in_domain(v1, v0):
# checks if domain v1 is partially inside domain v0
# domain v1 corners (TL = top left, TR = top right, BL = bottom left, BR = botom right)
is_partially_in = False
v0_L, v0_B, v0_T, v0_R = v0[0], v0[1], v0[2], v0[3]
v1_L, v1_B, v1_T, v1_R = v1[0], v1[1], v1[2], v1[3]
TL = [v1_L , v1_T]
TR = [v1_R , v1_T]
BL = [v1_L , v1_B]
BR = [v1_R , v1_B]
v1_corners = [TL, TR, BL, BR]
for corner in v1_corners:
if is_in_domain(corner[0], corner[1], v0_L, v0_B, v0_T, v0_R):
is_partially_in = True
return is_partially_in
def get_domain_subdomains(domain):
# domain = [left, bottom, top, right]
# left = domain[0]
# bottom = domain[1]
# top = domain[2]
# right = domain[3]
# -----------
# | q1 | q2 |
# -----------
# | q3 | q4 |
# -----------
dom_h = domain[2] - domain[1]
dom_w = domain[3] - domain[0]
q1 = [domain[0], domain[1] + dom_h/2, domain[2] , domain[3] - dom_w/2]
q2 = [domain[0] + dom_w/2, domain[1] + dom_h/2, domain[2] , domain[3]]
q3 = [domain[0], domain[1], domain[1] + dom_h/2, domain[3] - dom_w/2]
q4 = [domain[0] + dom_w/2, domain[1], domain[1] + dom_h/2 , domain[3]]
return q1, q2, q3, q4
def count_in_domain(xs, ys, domain):
count = 0
for i in range(xs.shape[0]):
if is_in_domain(xs[i], ys[i], domain[0], domain[1], domain[2], domain[3]):
count += 1
return count
def laplace_noise(Lambda, seed=7): # using inverse transform sampling
# for numbers between -N and N
N = Lambda*10
x = np.arange(-N,N+1,N/20000)
# pdf P
P = 1.0 / (2*Lambda) * np.exp(-np.abs(x) / Lambda)
P = P / np.sum(P)
# cdf C
C = P.copy()
for i in np.arange(1, P.shape[0]):
C[i] = C[i-1] + P[i]
# get sample from laplace distribution wiht uniform random number
u = np.random.rand()
sample = x[np.argmin(np.abs(C-u))]
return sample
def get_range_count(q_dom, data_x, data_y, tree_out_doms, tree_noisy_counts, tree_counts):
true_range_count = count_in_domain(data_x, data_y, q_dom)
noisy_range_count = 0
# if query domain intersects any tree domain, add its count
for i in range(len(tree_out_doms)):
if is_domain_partially_in_domain(q_dom, tree_out_doms[i]):
noisy_range_count += tree_noisy_counts[i]
return noisy_range_count, true_range_count
####################
# App setup
####################
## page config
st.set_page_config(page_title='Private Range Queries',
page_icon=':round_pushpin:', # :pushpin: :earth_africa: :world_map:
layout='wide', # "centered" or "wide"
initial_sidebar_state='expanded') # "auto" or "expanded" or "collapsed"
## page logo
logo = Image.open('figures/logo3.png')
st.image(logo, use_column_width=True)
## display link to paper
st.markdown('*Read full paper [here](https://github.com/ruankie/differentially-private-range-queries/blob/main/paper.pdf)*')
st.markdown('***')
## sidebar
st.sidebar.markdown('# Parameters')
# data/map
data_map = st.sidebar.selectbox('Select Data (Map)', ['Beijing Taxi Data', 'Gowalla Social Media'])
if data_map == 'Beijing Taxi Data':
x, y = load_data(dataset='beijing')
elif data_map == 'Gowalla Social Media':
x, y = load_data(dataset='gowalla')
else:
raise ValueError(dataset+' is not a valid data set! Choose a valid one.')
# calculations for query
# for default query
x_min, x_max = np.min(x), np.max(x)
y_min, y_max = np.min(y), np.max(y)
x_range = x_max - x_min
y_range = y_max -y_min
# default query
q_default = np.round([x_min + 0.25*x_range,
y_min + 0.25*y_range,
(y_min + 0.25*y_range) + 0.5*y_range,
(x_min + 0.25*x_range) + 0.5*x_range],2)
q_default_str = str(q_default[0])+', '+str(q_default[1])+', '+str(q_default[2])+', '+str(q_default[3])
left_x = q_default[0]
bottom_y = q_default[1]
top_y = q_default[2]
right_x =q_default[3]
# query algorithm
algo = st.sidebar.selectbox('Select Algorithm', ['PrivTree','Simple QuadTree','Uniform Grid'])
# algorithm parameters
if algo == 'Uniform Grid':
st.sidebar.markdown(r'#### Privacy Budget ($\epsilon$)')
epsilon = st.sidebar.slider('', min_value=0.0, max_value=2.0, value=0.1, step=0.01)
st.sidebar.markdown(r'#### Grid Parameter ($m$)')
st.sidebar.text('(default value is optimal)')
m = st.sidebar.slider('', min_value=0, max_value=100, value=int(( (len(x) * epsilon) / 10.0 )**0.5), step=10)
st.sidebar.markdown(r'#### Laplace Noise Parameter ($\lambda$)')
lam = st.sidebar.slider('', min_value=(1/epsilon), max_value=2.0*(1/epsilon), value=(1/epsilon), step=(2.0/10.0)*(1/epsilon))
elif algo == 'Simple QuadTree':
st.sidebar.markdown(r'#### Privacy Budget ($\epsilon$)')
epsilon = st.sidebar.slider('', min_value=0.0, max_value=2.0, value=0.1, step=0.01)
st.sidebar.markdown(r'#### Count Threshold ($\theta$)')
theta = st.sidebar.slider('', min_value=100, max_value=5000, value=1000, step=100)
st.sidebar.markdown(r'#### Max Tree Depth ($h$)')
h = st.sidebar.slider('', min_value=10, max_value=500, value=150, step=10)
st.sidebar.markdown(r'#### Laplace Noise Parameter ($\lambda$)')
st.sidebar.text('(differential pivacy guaranteed\nfor entire given range)')
lam = st.sidebar.slider('', min_value=(h/epsilon), max_value=2.0*(h/epsilon), value=(h/epsilon), step=(2.0/10.0)*(h/epsilon))
elif algo == 'PrivTree':
st.sidebar.markdown(r'#### Privacy Budget ($\epsilon$)')
epsilon = st.sidebar.slider('', min_value=0.0, max_value=2.0, value=0.1, step=0.01)
st.sidebar.markdown(r'#### Count Threshold ($\theta$)')
theta = st.sidebar.slider('', min_value=0, max_value=5000, value=0, step=100)
st.sidebar.markdown(r'#### Laplace Noise Parameter ($\lambda$)')
st.sidebar.text('(differential pivacy guaranteed\nfor entire given range)')
lam_def = 7.0/(3.0 * epsilon)
lam = st.sidebar.slider('', min_value=lam_def, max_value=2.0*lam_def, value=lam_def, step=(2.0/10.0)*lam_def)
st.sidebar.markdown(r'#### Scaling Parameter ($\delta$)')
delta_def = lam * 1.3862944 #np.log(4)
delta = st.sidebar.slider('', min_value=0.1*delta_def, max_value=2.0*delta_def, value=delta_def, step=0.01)
## input range query
st.markdown('## Range Query Input')
# check boxes
decompose = st.checkbox('Show underlying spatial decomposition (takes time to compute)', value=True)
show_q = st.checkbox('Show query area', value=True)
# query input
q_input = st.text_input('Query Coordinates (left x, bottom y, top y, right x):', q_default_str)
left_x, bottom_y, top_y, right_x = q_input.split(', ')
left_x = float(left_x)
bottom_y = float(bottom_y)
top_y = float(top_y)
right_x = float(right_x)
q = np.array([left_x, bottom_y, top_y, right_x])
if not decompose:
if algo == 'Uniform Grid':
with st.spinner('Performing spatial decomposition. Please wait...'):
domains, noisy_counts, counts, fig, ax = uniform_grid(x, y, m=m, lam=lam, domain_margin=1e-2, plot=True, seed=7)
elif algo == 'Simple QuadTree':
with st.spinner('Performing spatial decomposition. Please wait...'):
domains, noisy_counts, counts, tree_depth, fig, ax = simple_tree(x, y, lam=lam, theta=theta, h=h, domain_margin=1e-2, plot=True, seed=7)
elif algo == 'PrivTree':
with st.spinner('Performing spatial decomposition. Please wait...'):
domains, noisy_counts, counts, tree_depth, fig, ax = priv_tree(x, y, lam=lam, theta=theta, delta=delta, domain_margin=1e-2, plot=True, seed=7)
## Plot map data
st.markdown('## Data Plot')
if decompose:
if algo == 'Uniform Grid':
with st.spinner('Performing spatial decomposition. Please wait...'):
domains, noisy_counts, counts, fig, ax = uniform_grid(x, y, m=m, lam=lam, domain_margin=1e-2, plot=True, seed=7)
if show_q:
plot_rect(ax, left_x, bottom_y, top_y, right_x, fill=True, color='g', edgecolor='g', alpha=0.3, hatch=None)
st.pyplot(fig)
elif algo == 'Simple QuadTree':
with st.spinner('Performing spatial decomposition. Please wait...'):
domains, noisy_counts, counts, tree_depth, fig, ax = simple_tree(x, y, lam=lam, theta=theta, h=h, domain_margin=1e-2, plot=True, seed=7)
if show_q:
plot_rect(ax, left_x, bottom_y, top_y, right_x, fill=True, color='g', edgecolor='g', alpha=0.3, hatch=None)
st.pyplot(fig)
elif algo == 'PrivTree':
with st.spinner('Performing spatial decomposition. Please wait...'):
domains, noisy_counts, counts, tree_depth, fig, ax = priv_tree(x, y, lam=lam, theta=theta, delta=delta, domain_margin=1e-2, plot=True, seed=7)
if show_q:
plot_rect(ax, left_x, bottom_y, top_y, right_x, fill=True, color='g', edgecolor='g', alpha=0.3, hatch=None)
st.pyplot(fig)
else:
fig, ax = plot_locations_xy(x, y,marker_size=1.5)
if show_q:
plot_rect(ax, left_x, bottom_y, top_y, right_x, fill=True, color='g', edgecolor='g', alpha=0.3, hatch=None)
st.pyplot(fig)
## display range query results
st.markdown('## Range Query Results')
noisy_range_count, true_range_count = get_range_count(q, x, y, domains, noisy_counts, counts)
st.write('True Count:', int(true_range_count))
st.write('Noisy Count:', int(noisy_range_count))
## display algorithm pseudo code
st.markdown('***')
st.markdown('## Algorithm Pseudo Code')
show_pseudo = st.checkbox('Show algorithm pseudo code', value=True)
if show_pseudo:
if algo == 'Uniform Grid':
alg_img = Image.open('figures/ug_alg.PNG')
st.image(alg_img)
elif algo == 'Simple QuadTree':
alg_img = Image.open('figures/simple_tree_alg.PNG')
st.image(alg_img)
elif algo == 'PrivTree':
alg_img = Image.open('figures/privtree_alg.PNG')
st.image(alg_img)
## display author details
st.markdown('***')
st.markdown('*By Ruan Pretorius*')
st.markdown('*[LinkedIn](https://www.linkedin.com/in/ruan-pretorius)*')
## references
st.markdown('***')
st.markdown('## References')
st.markdown('''
* *Data Sets:*
* [Beijing Taxi Data Set](http://snap.stanford.edu/data/loc-gowalla.html)
* [Gowalla Data Set](https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/?from=http%3A%2F%2Fresearch.microsoft.com%2Fapps%2Fpubs%2F%3Fid%3D152883)
* *Algorithms:*
* J. Zhang, X. Xiaokui, and X. Xing, ``Privtree: A differentially private algorithm for hierarchical decompositions,''
In Proceedings of the 2016 International Conference on Management of Data, 2016, pp. 155-170.
* W. Qardaji, W. Yang and N. Li, ``Differentially private grids for geospatial data,''
2013 IEEE 29th International Conference on Data Engineering (ICDE), Brisbane, QLD, 2013, pp. 757-768, doi: 10.1109/ICDE.2013.6544872.
* G. Cormode, C. Procopiuc, D. Srivastava, E. Shen and T. Yu, ``Differentially Private Spatial Decompositions,''
2012 IEEE 28th International Conference on Data Engineering, Washington, DC, 2012, pp. 20-31, doi: 10.1109/ICDE.2012.16.''')