-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfailed_km.py
54 lines (38 loc) · 1.12 KB
/
failed_km.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.cluster import KMeans
# read data
data1 = pd.read_csv('AAAA.csv')
print('data1:', data1.shape)
data2 = pd.read_csv('ACGN.csv')
print('data2:', data2.shape)
data3 = pd.read_csv('AELV.csv')
print('data3:', data3.shape)
data4 = pd.read_csv('ANAV.csv')
print('data4:', data4.shape)
data5 = pd.read_csv('AOXY.csv')
print('data5:', data5.shape)
# getting the values
x1 = data1['posX'].values
y1 = data1['posZ'].values
x2 = data2['posX'].values
y2 = data2['posZ'].values
x3 = data3['posX'].values
y3 = data3['posZ'].values
x4 = data4['posX'].values
y4 = data4['posZ'].values
x5 = data5['posX'].values
y5 = data5['posZ'].values
# X is the dataset
X = np.array(list(zip(zip(x1, y1), zip(x2, y2), zip(x3, y3), zip(x4, y4), zip(x5, y5))))
# number of clusters*****************
k = 2
kmeans = KMeans(n_clusters = k)
kmeans.fit(X)
y_kmeans = kmeans.predict(X)
print(y_kmeans)
plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=50, cmap='viridis')
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5);
plt.show()