-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathiterative_pruning.py
121 lines (84 loc) · 3.71 KB
/
iterative_pruning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from compressor import *
def iter_prune(args, data_func=get_loaders, model_class=None, **kwargs):
trainloader, val_loader, test_loader = data_func(args)
topk = tuple(sorted(args.topk)) # sort in ascending order
epoch = 1
best_loss = sys.maxsize
if args.arch:
model = models.__dict__[args.arch](args.pretrained)
optimizer = optim.__dict__[args.optimizer](model.parameters(), lr=args.lr)
# TODO: check if the optimizer needs momentum and weight decay
if args.optimizer == 'SGD':
optimizer.momentum = args.momentum
optimizer.weight_decay = args.weight_decay
else:
assert model_class is not None
model = model_class(**kwargs)
optimizer = optim.__dict__[args.optimizer](model.parameters(), lr=args.lr)
# TODO: check if the optimizer needs momentum and weight decay
if args.optimizer == 'SGD':
optimizer.momentum = args.momentum
optimizer.weight_decay = args.weight_decay
if args.resume:
checkpoint = load_checkpoint(args.resume)
model.load_state_dict(checkpoint['state_dict'])
epoch = checkpoint['epoch'] % args.max_epochs + 1
best_loss = checkpoint['best_loss']
try:
optimizer.load_state_dict(checkpoint['optimizer'])
except Exception as e:
raise e
print(model.__class__)
criterion = nn.CrossEntropyLoss()
if args.cuda:
model = nn.DataParallel(model).cuda()
criterion = criterion.cuda()
compressor = Compressor(model, cuda=args.cuda)
model.train()
pct_pruned = 0.0
scores = [AverageMeter() for _ in topk]
val_scores = [0.0 for _ in topk]
while True:
if epoch == 1:
new_pct_pruned = compressor.prune()
logging.info('Pruned %.3f %%' % (100 * new_pct_pruned))
top_accs = validate(model, val_loader, topk, cuda=args.cuda)
if new_pct_pruned - pct_pruned <= 0.001 and converged(val_scores, top_accs):
break
pct_pruned = new_pct_pruned
val_scores = top_accs
for e in range(epoch, args.max_epochs + 1):
for i, (input, label) in enumerate(trainloader, 0):
input, label = Variable(input), Variable(label)
if args.cuda:
input, label = input.cuda(), label.cuda()
optimizer.zero_grad()
output = model(input)
precisions = accuracy(output, label, topk)
for i, s in enumerate(scores):
s.update(precisions[i][0], input.size(0))
loss = criterion(output, label)
loss.backward()
compressor.set_grad()
optimizer.step()
if e % args.interval == 0:
checkpoint = {
'state_dict': model.module.state_dict()
if args.cuda else model.state_dict(),
'epoch': e,
'best_loss': max(best_loss, loss.item()),
'optimizer': optimizer.state_dict()
}
save_checkpoint(checkpoint, is_best=(loss.item()<best_loss))
if e % 30 == 0:
# TODO: currently manually adjusting learning rate, could be changed to user input
lr = optimizer.lr * 0.1
adjust_learning_rate(optimizer, lr, verbose=True)
epoch = 1
test_topk = validate(model, test_loader, topk, cuda=args.cuda)
def main():
from lenet_300 import LeNet_300_100 as Model
args = parse_args()
iter_prune(args, data_func=get_mnist_loaders, model_class=Model)
if __name__ == '__main__':
main()