-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
43 lines (37 loc) · 1.63 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from flask import Flask, render_template, request
import jsonify
import requests
import pickle
import numpy as np
import sklearn
from sklearn.preprocessing import StandardScaler
app = Flask(__name__)
model = pickle.load(open('random_forest_nia_model.pkl', 'rb'))
@app.route('/',methods=['GET'])
def Home():
return render_template('index.html')
standard_to = StandardScaler()
@app.route("/predict", methods=['POST'])
def predict():
if request.method == 'POST':
Prgenencies= int(request.form['Prgenencies'])
Glucoose=float(request.form['Glucoose'])
Blood_Pressure=int(request.form['Blood_Pressure'])
#Kms_Driven2=np.log(Kms_Driven)
Skin_Thickness=int(request.form['Skin_Thickness'])
Insulin=int(request.form['Insulin'])
BMI=float(request.form['BMI'])
Diabetesconstant=float(request.form['Diabetesconstant'])
Age=int(request.form['Age'])
prediction=model.predict([[Prgenencies,Glucoose,Blood_Pressure,Skin_Thickness,Insulin,BMI,Diabetesconstant,Age]])
#output=r(prediction[1],2)
if prediction==2:
return render_template('index.html',prediction_texts="Invalid inputs {}".format(prediction) )
elif prediction ==1:
return render_template('index.html',prediction_text= "Sorry you have diabetes {}".format(prediction))
else:
return render_template('index.html',prediction_text= "Congratulations you dont't have diabetes {}".format(prediction))
else:
return render_template('index.html')
if __name__=="__main__":
app.run(debug=True)