-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathqi_ascoli.py
444 lines (354 loc) · 14 KB
/
qi_ascoli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
# Code for finding the the rheobase current injection values of excitatory and inhibitory neurons.
import pyNN.spiNNaker as sim
# prepare simulation
if simulator == "pynn_spinnaker":
import pynn_spinnaker as sim
logger = logging.getLogger("pynn_spinnaker")
logger.setLevel(logging.INFO)
logger.addHandler(logging.StreamHandler())
else:
exec('import pyNN.%s as sim' % simulator)
sim.setup(**simulator_params[simulator])
def sim_runner(wgf):
wg = wgf
import pyNN.neuron as sim
nproc = sim.num_processes()
node = sim.rank()
print(nproc)
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rcParams.update({'font.size':16})
#import mpi4py
#threads = sim.rank()
threads = 1
rngseed = 98765
parallel_safe = False
#extra = {'threads' : threads}
import os
import pandas as pd
import sys
import numpy as np
from pyNN.neuron import STDPMechanism
import copy
from pyNN.random import RandomDistribution, NumpyRNG
import pyNN.neuron as neuron
from pyNN.neuron import h
from pyNN.neuron import StandardCellType, ParameterSpace
from pyNN.random import RandomDistribution, NumpyRNG
from pyNN.neuron import STDPMechanism, SpikePairRule, AdditiveWeightDependence, FromListConnector, TsodyksMarkramSynapse
from pyNN.neuron import Projection, OneToOneConnector
from numpy import arange
import pyNN
from pyNN.utility import get_simulator, init_logging, normalized_filename
import random
import socket
#from neuronunit.optimization import get_neab
import networkx as nx
sim = pyNN.neuron
# Get some hippocampus connectivity data, based on a conversation with
# academic researchers on GH:
# https://github.com/Hippocampome-Org/GraphTheory/issues?q=is%3Aissue+is%3Aclosed
# scrape hippocamome connectivity data, that I intend to use to program neuromorphic hardware.
# conditionally get files if they don't exist.
path_xl = '_hybrid_connectivity_matrix_20171103_092033.xlsx'
if not os.path.exists(path_xl):
os.system('wget https://github.com/Hippocampome-Org/GraphTheory/files/1657258/_hybrid_connectivity_matrix_20171103_092033.xlsx')
xl = pd.ExcelFile(path_xl)
dfEE = xl.parse()
dfEE.loc[0].keys()
dfm = dfEE.as_matrix()
rcls = dfm[:,:1] # real cell labels.
rcls = rcls[1:]
rcls = { k:v for k,v in enumerate(rcls) } # real cell labels, cast to dictionary
import pickle
with open('cell_names.p','wb') as f:
pickle.dump(rcls,f)
import pandas as pd
pd.DataFrame(rcls).to_csv('cell_names.csv', index=False)
filtered = dfm[:,3:]
filtered = filtered[1:]
rng = NumpyRNG(seed=64754)
delay_distr = RandomDistribution('normal', [2, 1e-1], rng=rng)
weight_distr = RandomDistribution('normal', [45, 1e-1], rng=rng)
sanity_e = []
sanity_i = []
EElist = []
IIlist = []
EIlist = []
IElist = []
for i,j in enumerate(filtered):
for k,xaxis in enumerate(j):
if xaxis == 1 or xaxis == 2:
source = i
sanity_e.append(i)
target = k
if xaxis ==-1 or xaxis == -2:
sanity_i.append(i)
source = i
target = k
index_exc = list(set(sanity_e))
index_inh = list(set(sanity_i))
import pickle
with open('cell_indexs.p','wb') as f:
returned_list = [index_exc, index_inh]
pickle.dump(returned_list,f)
import numpy
a = numpy.asarray(index_exc)
numpy.savetxt('pickles/'+str(k)+'excitatory_nunber_labels.csv', a, delimiter=",")
import numpy
a = numpy.asarray(index_inh)
numpy.savetxt('pickles/'+str(k)+'inhibitory_nunber_labels.csv', a, delimiter=",")
for i,j in enumerate(filtered):
for k,xaxis in enumerate(j):
if xaxis==1 or xaxis == 2:
source = i
sanity_e.append(i)
target = k
delay = delay_distr.next()
weight = 1.0
if target in index_inh:
EIlist.append((source,target,delay,weight))
else:
EElist.append((source,target,delay,weight))
if xaxis==-1 or xaxis == -2:
sanity_i.append(i)
source = i
target = k
delay = delay_distr.next()
weight = 1.0
if target in index_exc:
IElist.append((source,target,delay,weight))
else:
IIlist.append((source,target,delay,weight))
internal_conn_ee = sim.FromListConnector(EElist)
ee = internal_conn_ee.conn_list
ee_srcs = ee[:,0]
ee_tgs = ee[:,1]
internal_conn_ie = sim.FromListConnector(IElist)
ie = internal_conn_ie.conn_list
ie_srcs = set([ int(e[0]) for e in ie ])
ie_tgs = set([ int(e[1]) for e in ie ])
internal_conn_ei = sim.FromListConnector(EIlist)
ei = internal_conn_ei.conn_list
ei_srcs = set([ int(e[0]) for e in ei ])
ei_tgs = set([ int(e[1]) for e in ei ])
internal_conn_ii = sim.FromListConnector(IIlist)
ii = internal_conn_ii.conn_list
ii_srcs = set([ int(e[0]) for e in ii ])
ii_tgs = set([ int(e[1]) for e in ii ])
for e in internal_conn_ee.conn_list:
assert e[0] in ee_srcs
assert e[1] in ee_tgs
for i in internal_conn_ii.conn_list:
assert i[0] in ii_srcs
assert i[1] in ii_tgs
ml = len(filtered[1])+1
pre_exc = []
post_exc = []
pre_inh = []
post_inh = []
rng = NumpyRNG(seed=64754)
delay_distr = RandomDistribution('normal', [2, 1e-1], rng=rng)
plot_EE = np.zeros(shape=(ml,ml), dtype=bool)
plot_II = np.zeros(shape=(ml,ml), dtype=bool)
plot_EI = np.zeros(shape=(ml,ml), dtype=bool)
plot_IE = np.zeros(shape=(ml,ml), dtype=bool)
for i in EElist:
plot_EE[i[0],i[1]] = int(0)
#plot_ss[i[0],i[1]] = int(1)
if i[0]!=i[1]: # exclude self connections
plot_EE[i[0],i[1]] = int(1)
pre_exc.append(i[0])
post_exc.append(i[1])
assert len(pre_exc) == len(post_exc)
for i in IIlist:
plot_II[i[0],i[1]] = int(0)
if i[0]!=i[1]:
plot_II[i[0],i[1]] = int(1)
pre_inh.append(i[0])
post_inh.append(i[1])
for i in IElist:
plot_IE[i[0],i[1]] = int(0)
if i[0]!=i[1]: # exclude self connections
plot_IE[i[0],i[1]] = int(1)
pre_inh.append(i[0])
post_inh.append(i[1])
for i in EIlist:
plot_EI[i[0],i[1]] = int(0)
if i[0]!=i[1]:
plot_EI[i[0],i[1]] = int(1)
pre_exc.append(i[0])
post_exc.append(i[1])
plot_excit = plot_EI + plot_EE
plot_inhib = plot_IE + plot_II
assert len(pre_inh) == len(post_inh)
num_exc = [ i for i,e in enumerate(plot_excit) if sum(e) > 0 ]
num_inh = [ y for y,i in enumerate(plot_inhib) if sum(i) > 0 ]
# the network is dominated by inhibitory neurons, which is unusual for modellers.
assert num_inh > num_exc
assert np.sum(plot_inhib) > np.sum(plot_excit)
assert len(num_exc) < ml
assert len(num_inh) < ml
# # Plot all the Projection pairs as a connection matrix (Excitatory and Inhibitory Connections)
import pickle
with open('graph_inhib.p','wb') as f:
pickle.dump(plot_inhib,f, protocol=2)
import pickle
with open('graph_excit.p','wb') as f:
pickle.dump(plot_excit,f, protocol=2)
#with open('cell_names.p','wb') as f:
# pickle.dump(rcls,f)
import pandas as pd
pd.DataFrame(plot_EE).to_csv('ee.csv', index=False)
import pandas as pd
pd.DataFrame(plot_IE).to_csv('ie.csv', index=False)
import pandas as pd
pd.DataFrame(plot_II).to_csv('ii.csv', index=False)
import pandas as pd
pd.DataFrame(plot_EI).to_csv('ei.csv', index=False)
from scipy.sparse import coo_matrix
m = np.matrix(filtered[1:])
bool_matrix = np.add(plot_excit,plot_inhib)
with open('bool_matrix.p','wb') as f:
pickle.dump(bool_matrix,f, protocol=2)
if not isinstance(m, coo_matrix):
m = coo_matrix(m)
Gexc_ud = nx.Graph(plot_excit)
avg_clustering = nx.average_clustering(Gexc_ud)#, nodes=None, weight=None, count_zeros=True)[source]
rc = nx.rich_club_coefficient(Gexc_ud,normalized=False)
print('This graph structure as rich as: ',rc[0])
gexc = nx.DiGraph(plot_excit)
gexcc = nx.betweenness_centrality(gexc)
top_exc = sorted(([ (v,k) for k, v in dict(gexcc).items() ]), reverse=True)
in_degree = gexc.in_degree()
top_in = sorted(([ (v,k) for k, v in in_degree.items() ]))
in_hub = top_in[-1][1]
out_degree = gexc.out_degree()
top_out = sorted(([ (v,k) for k, v in out_degree.items() ]))
out_hub = top_out[-1][1]
mean_out = np.mean(list(out_degree.values()))
mean_in = np.mean(list(in_degree.values()))
mean_conns = int(mean_in + mean_out/2)
k = 2 # number of neighbouig nodes to wire.
p = 0.25 # probability of instead wiring to a random long range destination.
ne = len(plot_excit)# size of small world network
small_world_ring_excit = nx.watts_strogatz_graph(ne,mean_conns,0.25)
k = 2 # number of neighbouring nodes to wire.
p = 0.25 # probability of instead wiring to a random long range destination.
ni = len(plot_inhib)# size of small world network
small_world_ring_inhib = nx.watts_strogatz_graph(ni,mean_conns,0.25)
nproc = sim.num_processes()
nproc = 8
host_name = socket.gethostname()
node_id = sim.setup(timestep=0.01, min_delay=1.0)#, **extra)
print("Host #%d is on %s" % (node_id + 1, host_name))
rng = NumpyRNG(seed=64754)
#pop_size = len(num_exc)+len(num_inh)
#num_exc = [ i for i,e in enumerate(plot_excit) if sum(e) > 0 ]
#num_inh = [ y for y,i in enumerate(plot_inhib) if sum(i) > 0 ]
#pop_exc = sim.Population(len(num_exc), sim.Izhikevich(a=0.02, b=0.2, c=-65, d=8, i_offset=0))
#pop_inh = sim.Population(len(num_inh), sim.Izhikevich(a=0.02, b=0.25, c=-65, d=2, i_offset=0))
#index_exc = list(set(sanity_e))
#index_inh = list(set(sanity_i))
all_cells = sim.Population(len(index_exc)+len(index_inh), sim.Izhikevich(a=0.02, b=0.2, c=-65, d=8, i_offset=0))
#all_cells = None
#all_cells = pop_exc + pop_inh
pop_exc = sim.PopulationView(all_cells,index_exc)
pop_inh = sim.PopulationView(all_cells,index_inh)
#print(pop_exc)
#print(dir(pop_exc))
for pe in pop_exc:
print(pe)
#import pdb
pe = all_cells[pe]
#pdb.set_trace()
#pe = all_cells[i]
r = random.uniform(0.0, 1.0)
pe.set_parameters(a=0.02, b=0.2, c=-65+15*r, d=8-r**2, i_offset=0)
#pop_exc.append(pe)
#pop_exc = sim.Population(pop_exc)
for pi in index_inh:
pi = all_cells[pi]
#print(pi)
#pi = all_cells[i]
r = random.uniform(0.0, 1.0)
pi.set_parameters(a=0.02+0.08*r, b=0.25-0.05*r, c=-65, d= 2, i_offset=0)
#pop_inh.append(pi)
#pop_inh = sim.Population(pop_inh)
'''
for pe in pop_exc:
r = random.uniform(0.0, 1.0)
pe.set_parameters(a=0.02, b=0.2, c=-65+15*r, d=8-r**2, i_offset=0)
for pi in pop_inh:
r = random.uniform(0.0, 1.0)
pi.set_parameters(a=0.02+0.08*r, b=0.25-0.05*r, c=-65, d= 2, i_offset=0)
'''
NEXC = len(num_exc)
NINH = len(num_inh)
exc_syn = sim.StaticSynapse(weight = wg, delay=delay_distr)
assert np.any(internal_conn_ee.conn_list[:,0]) < ee_srcs.size
prj_exc_exc = sim.Projection(all_cells, all_cells, internal_conn_ee, exc_syn, receptor_type='excitatory')
prj_exc_inh = sim.Projection(all_cells, all_cells, internal_conn_ei, exc_syn, receptor_type='excitatory')
inh_syn = sim.StaticSynapse(weight = wg, delay=delay_distr)
delay_distr = RandomDistribution('normal', [1, 100e-3], rng=rng)
prj_inh_inh = sim.Projection(all_cells, all_cells, internal_conn_ii, inh_syn, receptor_type='inhibitory')
prj_inh_exc = sim.Projection(all_cells, all_cells, internal_conn_ie, inh_syn, receptor_type='inhibitory')
inh_distr = RandomDistribution('normal', [1, 2.1e-3], rng=rng)
def prj_change(prj,wg):
prj.setWeights(wg)
prj_change(prj_exc_exc,wg)
prj_change(prj_exc_inh,wg)
prj_change(prj_inh_exc,wg)
prj_change(prj_inh_inh,wg)
def prj_check(prj):
for w in prj.weightHistogram():
for i in w:
print(i)
prj_check(prj_exc_exc)
prj_check(prj_exc_inh)
prj_check(prj_inh_exc)
prj_check(prj_inh_inh)
#print(rheobase['value'])
#print(float(rheobase['value']),1.25/1000.0)
'''Old values that worked
noise = sim.NoisyCurrentSource(mean=0.85/1000.0, stdev=5.00/1000.0, start=0.0, stop=2000.0, dt=1.0)
pop_exc.inject(noise)
#1000.0 pA
noise = sim.NoisyCurrentSource(mean=1.740/1000.0, stdev=5.00/1000.0, start=0.0, stop=2000.0, dt=1.0)
pop_inh.inject(noise)
#1750.0 pA
'''
noise = sim.NoisyCurrentSource(mean=0.74/1000.0, stdev=4.00/1000.0, start=0.0, stop=2000.0, dt=1.0)
pop_exc.inject(noise)
#1000.0 pA
noise = sim.NoisyCurrentSource(mean=1.440/1000.0, stdev=4.00/1000.0, start=0.0, stop=2000.0, dt=1.0)
pop_inh.inject(noise)
##
# Setup and run a simulation. Note there is no current injection into the neuron.
# All cells in the network are in a quiescent state, so its not a surprise that xthere are no spikes
##
sim = pyNN.neuron
arange = np.arange
import re
all_cells.record(['v','spikes']) # , 'u'])
all_cells.initialize(v=-65.0, u=-14.0)
# === Run the simulation =====================================================
tstop = 2000.0
sim.run(tstop)
data = None
data = all_cells.get_data().segments[0]
#print(len(data.analogsignals[0].times))
with open('pickles/qi'+str(wg)+'.p', 'wb') as f:
pickle.dump(data,f)
# make data none or else it will grow in a loop
all_cells = None
data = None
noise = None
#iter_sim = [ (i,wg) for i,wg in enumerate(weight_gain_factors.keys()) ]
#import dask.bag as db
#iter_sim = db.from_sequence(iter_sim,4)
#from itertools import repeat
#_ = list(map(map_sim,iter_sim,repeat(sim)))
#_ = list(db.map(map_sim,iter_sim).compute());