Skip to content

Latest commit

 

History

History
631 lines (547 loc) · 15.6 KB

File metadata and controls

631 lines (547 loc) · 15.6 KB
comments difficulty edit_url tags
true
中等
树状数组
线段树
数组
动态规划

English Version

题目描述

给定一个未排序的整数数组 nums , 返回最长递增子序列的个数 。

注意 这个数列必须是 严格 递增的。

 

示例 1:

输入: [1,3,5,4,7]
输出: 2
解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7]。

示例 2:

输入: [2,2,2,2,2]
输出: 5
解释: 最长递增子序列的长度是1,并且存在5个子序列的长度为1,因此输出5。

 

提示: 

  • 1 <= nums.length <= 2000
  • -106 <= nums[i] <= 106

解法

方法一:动态规划

我们定义 $f[i]$ 表示以 $nums[i]$ 结尾的最长递增子序列的长度,定义 $cnt[i]$ 表示以 $nums[i]$ 结尾的最长递增子序列的个数。初始时 $f[i]=1$, $cnt[i]=1$。另外,定义 $mx$ 表示最长递增子序列的长度,定义 $ans$ 表示最长递增子序列的个数。

对于每一个 $nums[i]$,我们枚举 $nums[0:i-1]$ 中的所有元素 $nums[j]$,如果 $nums[j] \lt nums[i]$,则 $nums[i]$ 可以接在 $nums[j]$ 后面,形成一个更长的递增子序列。如果 $f[i] \lt f[j] + 1$,说明以 $nums[i]$ 结尾的最长递增子序列的长度增加了,那么我们需要更新 $f[i]=f[j]+1$,并且 $cnt[i]=cnt[j]$。如果 $f[i]=f[j]+1$,说明我们找到了一条长度与之前相同的最长递增子序列,那么我们需要将 $cnt[i]$ 增加 $cnt[j]$。然后,如果 $mx \lt f[i]$,说明最长递增子序列的长度增加了,那么我们需要更新 $mx=f[i]$,并且 $ans=cnt[i]$。如果 $mx=f[i]$,说明我们找到了一条长度与之前相同的最长递增子序列,那么我们需要将 $ans$ 增加 $cnt[i]$

最后,我们返回 $ans$ 即可。

时间复杂度 $O(n^2)$,空间复杂度 $O(n)$。其中 $n$ 是数组 $nums$ 的长度。

Python3

class Solution:
    def findNumberOfLIS(self, nums: List[int]) -> int:
        n = len(nums)
        f = [1] * n
        cnt = [1] * n
        mx = 0
        for i in range(n):
            for j in range(i):
                if nums[j] < nums[i]:
                    if f[i] < f[j] + 1:
                        f[i] = f[j] + 1
                        cnt[i] = cnt[j]
                    elif f[i] == f[j] + 1:
                        cnt[i] += cnt[j]
            if mx < f[i]:
                mx = f[i]
                ans = cnt[i]
            elif mx == f[i]:
                ans += cnt[i]
        return ans

Java

class Solution {
    public int findNumberOfLIS(int[] nums) {
        int n = nums.length;
        int[] f = new int[n];
        int[] cnt = new int[n];
        int mx = 0, ans = 0;
        for (int i = 0; i < n; ++i) {
            f[i] = 1;
            cnt[i] = 1;
            for (int j = 0; j < i; ++j) {
                if (nums[j] < nums[i]) {
                    if (f[i] < f[j] + 1) {
                        f[i] = f[j] + 1;
                        cnt[i] = cnt[j];
                    } else if (f[i] == f[j] + 1) {
                        cnt[i] += cnt[j];
                    }
                }
            }
            if (mx < f[i]) {
                mx = f[i];
                ans = cnt[i];
            } else if (mx == f[i]) {
                ans += cnt[i];
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    int findNumberOfLIS(vector<int>& nums) {
        int n = nums.size();
        int mx = 0, ans = 0;
        vector<int> f(n, 1);
        vector<int> cnt(n, 1);
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < i; ++j) {
                if (nums[j] < nums[i]) {
                    if (f[i] < f[j] + 1) {
                        f[i] = f[j] + 1;
                        cnt[i] = cnt[j];
                    } else if (f[i] == f[j] + 1) {
                        cnt[i] += cnt[j];
                    }
                }
            }
            if (mx < f[i]) {
                mx = f[i];
                ans = cnt[i];
            } else if (mx == f[i]) {
                ans += cnt[i];
            }
        }
        return ans;
    }
};

Go

func findNumberOfLIS(nums []int) (ans int) {
	n, mx := len(nums), 0
	f := make([]int, n)
	cnt := make([]int, n)
	for i, x := range nums {
		for j, y := range nums[:i] {
			if y < x {
				if f[i] < f[j]+1 {
					f[i] = f[j] + 1
					cnt[i] = cnt[j]
				} else if f[i] == f[j]+1 {
					cnt[i] += cnt[j]
				}
			}
		}
		if mx < f[i] {
			mx = f[i]
			ans = cnt[i]
		} else if mx == f[i] {
			ans += cnt[i]
		}
	}
	return
}

TypeScript

function findNumberOfLIS(nums: number[]): number {
    const n = nums.length;
    let [ans, mx] = [0, 0];
    const f: number[] = Array(n).fill(1);
    const cnt: number[] = Array(n).fill(1);
    for (let i = 0; i < n; ++i) {
        for (let j = 0; j < i; ++j) {
            if (nums[j] < nums[i]) {
                if (f[i] < f[j] + 1) {
                    f[i] = f[j] + 1;
                    cnt[i] = cnt[j];
                } else if (f[i] === f[j] + 1) {
                    cnt[i] += cnt[j];
                }
            }
        }
        if (mx < f[i]) {
            mx = f[i];
            ans = cnt[i];
        } else if (mx === f[i]) {
            ans += cnt[i];
        }
    }
    return ans;
}

Rust

impl Solution {
    pub fn find_number_of_lis(nums: Vec<i32>) -> i32 {
        let n = nums.len();
        let mut ans = 0;
        let mut mx = 0;
        let mut f = vec![1; n];
        let mut cnt = vec![1; n];
        for i in 0..n {
            for j in 0..i {
                if nums[j] < nums[i] {
                    if f[i] < f[j] + 1 {
                        f[i] = f[j] + 1;
                        cnt[i] = cnt[j];
                    } else if f[i] == f[j] + 1 {
                        cnt[i] += cnt[j];
                    }
                }
            }
            if mx < f[i] {
                mx = f[i];
                ans = cnt[i];
            } else if mx == f[i] {
                ans += cnt[i];
            }
        }
        ans
    }
}

方法二:树状数组

我们可以用树状数组维护前缀区间的最长递增子序列的长度和个数。我们将数组 $nums$ 中的元素去重并排序,得到数组 $arr$,然后我们枚举 $nums$ 中的每一个元素 $x$,在数组 $arr$ 中二分查找 $x$ 的位置 $i$,然后查询 $[1,i-1]$ 的最长递增子序列的长度和个数,记为 $v$$cnt$,然后更新 $[i]$ 的最长递增子序列的长度和个数为 $v+1$$\max(cnt,1)$。最后,我们查询 $[1,m]$ 的最长递增子序列的长度和个数,其中 $m$ 是数组 $arr$ 的长度,即为答案。

时间复杂度 $O(n \times \log n)$,空间复杂度 $O(n)$。其中 $n$ 是数组 $nums$ 的长度。

Python3

class BinaryIndexedTree:
    __slots__ = ["n", "c", "d"]

    def __init__(self, n):
        self.n = n
        self.c = [0] * (n + 1)
        self.d = [0] * (n + 1)

    def update(self, x, v, cnt):
        while x <= self.n:
            if self.c[x] < v:
                self.c[x] = v
                self.d[x] = cnt
            elif self.c[x] == v:
                self.d[x] += cnt
            x += x & -x

    def query(self, x):
        v = cnt = 0
        while x:
            if self.c[x] > v:
                v = self.c[x]
                cnt = self.d[x]
            elif self.c[x] == v:
                cnt += self.d[x]
            x -= x & -x
        return v, cnt


class Solution:
    def findNumberOfLIS(self, nums: List[int]) -> int:
        arr = sorted(set(nums))
        m = len(arr)
        tree = BinaryIndexedTree(m)
        for x in nums:
            i = bisect_left(arr, x) + 1
            v, cnt = tree.query(i - 1)
            tree.update(i, v + 1, max(cnt, 1))
        return tree.query(m)[1]

Java

class BinaryIndexedTree {
    private int n;
    private int[] c;
    private int[] d;

    public BinaryIndexedTree(int n) {
        this.n = n;
        c = new int[n + 1];
        d = new int[n + 1];
    }

    public void update(int x, int v, int cnt) {
        while (x <= n) {
            if (c[x] < v) {
                c[x] = v;
                d[x] = cnt;
            } else if (c[x] == v) {
                d[x] += cnt;
            }
            x += x & -x;
        }
    }

    public int[] query(int x) {
        int v = 0, cnt = 0;
        while (x > 0) {
            if (c[x] > v) {
                v = c[x];
                cnt = d[x];
            } else if (c[x] == v) {
                cnt += d[x];
            }
            x -= x & -x;
        }
        return new int[] {v, cnt};
    }
}

public class Solution {
    public int findNumberOfLIS(int[] nums) {
        // int[] arr = Arrays.stream(nums).distinct().sorted().toArray();
        int[] arr = nums.clone();
        Arrays.sort(arr);
        int m = arr.length;
        BinaryIndexedTree tree = new BinaryIndexedTree(m);
        for (int x : nums) {
            int i = Arrays.binarySearch(arr, x) + 1;
            int[] t = tree.query(i - 1);
            int v = t[0];
            int cnt = t[1];
            tree.update(i, v + 1, Math.max(cnt, 1));
        }
        return tree.query(m)[1];
    }
}

C++

class BinaryIndexedTree {
private:
    int n;
    vector<int> c;
    vector<int> d;

public:
    BinaryIndexedTree(int n)
        : n(n)
        , c(n + 1, 0)
        , d(n + 1, 0) {}

    void update(int x, int v, int cnt) {
        while (x <= n) {
            if (c[x] < v) {
                c[x] = v;
                d[x] = cnt;
            } else if (c[x] == v) {
                d[x] += cnt;
            }
            x += x & -x;
        }
    }

    pair<int, int> query(int x) {
        int v = 0, cnt = 0;
        while (x > 0) {
            if (c[x] > v) {
                v = c[x];
                cnt = d[x];
            } else if (c[x] == v) {
                cnt += d[x];
            }
            x -= x & -x;
        }
        return {v, cnt};
    }
};

class Solution {
public:
    int findNumberOfLIS(vector<int>& nums) {
        vector<int> arr = nums;
        sort(arr.begin(), arr.end());
        arr.erase(unique(arr.begin(), arr.end()), arr.end());
        int m = arr.size();
        BinaryIndexedTree tree(m);
        for (int x : nums) {
            auto it = lower_bound(arr.begin(), arr.end(), x);
            int i = distance(arr.begin(), it) + 1;
            auto [v, cnt] = tree.query(i - 1);
            tree.update(i, v + 1, max(cnt, 1));
        }
        return tree.query(m).second;
    }
};

Go

type BinaryIndexedTree struct {
	n int
	c []int
	d []int
}

func newBinaryIndexedTree(n int) BinaryIndexedTree {
	return BinaryIndexedTree{
		n: n,
		c: make([]int, n+1),
		d: make([]int, n+1),
	}
}

func (bit *BinaryIndexedTree) update(x, v, cnt int) {
	for x <= bit.n {
		if bit.c[x] < v {
			bit.c[x] = v
			bit.d[x] = cnt
		} else if bit.c[x] == v {
			bit.d[x] += cnt
		}
		x += x & -x
	}
}

func (bit *BinaryIndexedTree) query(x int) (int, int) {
	v, cnt := 0, 0
	for x > 0 {
		if bit.c[x] > v {
			v = bit.c[x]
			cnt = bit.d[x]
		} else if bit.c[x] == v {
			cnt += bit.d[x]
		}
		x -= x & -x
	}
	return v, cnt
}

func findNumberOfLIS(nums []int) int {
	arr := make([]int, len(nums))
	copy(arr, nums)
	sort.Ints(arr)
	m := len(arr)
	tree := newBinaryIndexedTree(m)
	for _, x := range nums {
		i := sort.SearchInts(arr, x) + 1
		v, cnt := tree.query(i - 1)
		tree.update(i, v+1, max(cnt, 1))
	}
	_, ans := tree.query(m)
	return ans
}

TypeScript

class BinaryIndexedTree {
    private n: number;
    private c: number[];
    private d: number[];

    constructor(n: number) {
        this.n = n;
        this.c = Array(n + 1).fill(0);
        this.d = Array(n + 1).fill(0);
    }

    update(x: number, v: number, cnt: number): void {
        while (x <= this.n) {
            if (this.c[x] < v) {
                this.c[x] = v;
                this.d[x] = cnt;
            } else if (this.c[x] === v) {
                this.d[x] += cnt;
            }
            x += x & -x;
        }
    }

    query(x: number): [number, number] {
        let v = 0;
        let cnt = 0;
        while (x > 0) {
            if (this.c[x] > v) {
                v = this.c[x];
                cnt = this.d[x];
            } else if (this.c[x] === v) {
                cnt += this.d[x];
            }
            x -= x & -x;
        }
        return [v, cnt];
    }
}

function findNumberOfLIS(nums: number[]): number {
    const arr: number[] = [...new Set(nums)].sort((a, b) => a - b);
    const m: number = arr.length;
    const tree: BinaryIndexedTree = new BinaryIndexedTree(m);
    const search = (x: number): number => {
        let l = 0,
            r = arr.length;
        while (l < r) {
            const mid = (l + r) >> 1;
            if (arr[mid] >= x) {
                r = mid;
            } else {
                l = mid + 1;
            }
        }
        return l + 1;
    };
    for (const x of nums) {
        const i: number = search(x);
        const [v, cnt]: [number, number] = tree.query(i - 1);
        tree.update(i, v + 1, Math.max(cnt, 1));
    }
    return tree.query(m)[1];
}

Rust

struct BinaryIndexedTree {
    n: usize,
    c: Vec<i32>,
    d: Vec<i32>,
}

impl BinaryIndexedTree {
    fn new(n: usize) -> BinaryIndexedTree {
        BinaryIndexedTree {
            n,
            c: vec![0; n + 1],
            d: vec![0; n + 1],
        }
    }

    fn update(&mut self, x: usize, v: i32, cnt: i32) {
        let mut x = x as usize;
        while x <= self.n {
            if self.c[x] < v {
                self.c[x] = v;
                self.d[x] = cnt;
            } else if self.c[x] == v {
                self.d[x] += cnt;
            }
            x += x & x.wrapping_neg();
        }
    }

    fn query(&self, mut x: usize) -> (i32, i32) {
        let (mut v, mut cnt) = (0, 0);
        while x > 0 {
            if self.c[x] > v {
                v = self.c[x];
                cnt = self.d[x];
            } else if self.c[x] == v {
                cnt += self.d[x];
            }
            x -= x & x.wrapping_neg();
        }
        (v, cnt)
    }
}

impl Solution {
    pub fn find_number_of_lis(nums: Vec<i32>) -> i32 {
        let mut arr: Vec<i32> = nums.iter().cloned().collect();
        arr.sort();
        let m = arr.len();
        let mut tree = BinaryIndexedTree::new(m);
        for x in nums.iter() {
            if let Ok(i) = arr.binary_search(x) {
                let (v, cnt) = tree.query(i);
                tree.update(i + 1, v + 1, cnt.max(1));
            }
        }
        let (_, ans) = tree.query(m);
        ans
    }
}