comments | difficulty | edit_url | rating | source | tags | |||
---|---|---|---|---|---|---|---|---|
true |
中等 |
1663 |
第 157 场周赛 Q3 |
|
你要开发一座金矿,地质勘测学家已经探明了这座金矿中的资源分布,并用大小为 m * n
的网格 grid
进行了标注。每个单元格中的整数就表示这一单元格中的黄金数量;如果该单元格是空的,那么就是 0
。
为了使收益最大化,矿工需要按以下规则来开采黄金:
- 每当矿工进入一个单元,就会收集该单元格中的所有黄金。
- 矿工每次可以从当前位置向上下左右四个方向走。
- 每个单元格只能被开采(进入)一次。
- 不得开采(进入)黄金数目为
0
的单元格。 - 矿工可以从网格中 任意一个 有黄金的单元格出发或者是停止。
示例 1:
输入:grid = [[0,6,0],[5,8,7],[0,9,0]] 输出:24 解释: [[0,6,0], [5,8,7], [0,9,0]] 一种收集最多黄金的路线是:9 -> 8 -> 7。
示例 2:
输入:grid = [[1,0,7],[2,0,6],[3,4,5],[0,3,0],[9,0,20]] 输出:28 解释: [[1,0,7], [2,0,6], [3,4,5], [0,3,0], [9,0,20]] 一种收集最多黄金的路线是:1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7。
提示:
1 <= grid.length, grid[i].length <= 15
0 <= grid[i][j] <= 100
- 最多 25 个单元格中有黄金。
我们可以枚举每个格子作为起点,然后从起点开始进行深度优先搜索。在搜索的过程中,每遇到一个非零的格子,就将其变成零,并继续搜索。当无法继续搜索时,计算当前的路径的黄金总数,然后将当前的格子变回非零的格子,从而进行回溯。
时间复杂度
class Solution:
def getMaximumGold(self, grid: List[List[int]]) -> int:
def dfs(i: int, j: int) -> int:
if not (0 <= i < m and 0 <= j < n and grid[i][j]):
return 0
v = grid[i][j]
grid[i][j] = 0
ans = max(dfs(i + a, j + b) for a, b in pairwise(dirs)) + v
grid[i][j] = v
return ans
m, n = len(grid), len(grid[0])
dirs = (-1, 0, 1, 0, -1)
return max(dfs(i, j) for i in range(m) for j in range(n))
class Solution {
private final int[] dirs = {-1, 0, 1, 0, -1};
private int[][] grid;
private int m;
private int n;
public int getMaximumGold(int[][] grid) {
m = grid.length;
n = grid[0].length;
this.grid = grid;
int ans = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
ans = Math.max(ans, dfs(i, j));
}
}
return ans;
}
private int dfs(int i, int j) {
if (i < 0 || i >= m || j < 0 || j >= n || grid[i][j] == 0) {
return 0;
}
int v = grid[i][j];
grid[i][j] = 0;
int ans = 0;
for (int k = 0; k < 4; ++k) {
ans = Math.max(ans, v + dfs(i + dirs[k], j + dirs[k + 1]));
}
grid[i][j] = v;
return ans;
}
}
class Solution {
public:
int getMaximumGold(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
function<int(int, int)> dfs = [&](int i, int j) {
if (i < 0 || i >= m || j < 0 || j >= n || !grid[i][j]) {
return 0;
}
int v = grid[i][j];
grid[i][j] = 0;
int ans = v + max({dfs(i - 1, j), dfs(i + 1, j), dfs(i, j - 1), dfs(i, j + 1)});
grid[i][j] = v;
return ans;
};
int ans = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
ans = max(ans, dfs(i, j));
}
}
return ans;
}
};
func getMaximumGold(grid [][]int) (ans int) {
m, n := len(grid), len(grid[0])
var dfs func(i, j int) int
dfs = func(i, j int) int {
if i < 0 || i >= m || j < 0 || j >= n || grid[i][j] == 0 {
return 0
}
v := grid[i][j]
grid[i][j] = 0
ans := 0
dirs := []int{-1, 0, 1, 0, -1}
for k := 0; k < 4; k++ {
ans = max(ans, v+dfs(i+dirs[k], j+dirs[k+1]))
}
grid[i][j] = v
return ans
}
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
ans = max(ans, dfs(i, j))
}
}
return
}
function getMaximumGold(grid: number[][]): number {
const m = grid.length;
const n = grid[0].length;
const dfs = (i: number, j: number): number => {
if (i < 0 || i >= m || j < 0 || j >= n || !grid[i][j]) {
return 0;
}
const v = grid[i][j];
grid[i][j] = 0;
let ans = v + Math.max(dfs(i - 1, j), dfs(i + 1, j), dfs(i, j - 1), dfs(i, j + 1));
grid[i][j] = v;
return ans;
};
let ans = 0;
for (let i = 0; i < m; i++) {
for (let j = 0; j < n; j++) {
ans = Math.max(ans, dfs(i, j));
}
}
return ans;
}
/**
* @param {number[][]} grid
* @return {number}
*/
var getMaximumGold = function (grid) {
const m = grid.length;
const n = grid[0].length;
const dfs = (i, j) => {
if (i < 0 || i >= m || j < 0 || j >= n || !grid[i][j]) {
return 0;
}
const v = grid[i][j];
grid[i][j] = 0;
let ans = v + Math.max(dfs(i - 1, j), dfs(i + 1, j), dfs(i, j - 1), dfs(i, j + 1));
grid[i][j] = v;
return ans;
};
let ans = 0;
for (let i = 0; i < m; i++) {
for (let j = 0; j < n; j++) {
ans = Math.max(ans, dfs(i, j));
}
}
return ans;
};