Skip to content

Latest commit

 

History

History
481 lines (402 loc) · 16.1 KB

File metadata and controls

481 lines (402 loc) · 16.1 KB
comments difficulty edit_url rating source tags
true
困难
2364
第 69 场双周赛 Q4
贪心
数组
矩阵
前缀和

English Version

题目描述

给你一个 m x n 的二进制矩阵 grid ,每个格子要么为 0 (空)要么为 1 (被占据)。

给你邮票的尺寸为 stampHeight x stampWidth 。我们想将邮票贴进二进制矩阵中,且满足以下 限制 和 要求 :

  1. 覆盖所有  格子。
  2. 不覆盖任何 被占据 的格子。
  3. 我们可以放入任意数目的邮票。
  4. 邮票可以相互有 重叠 部分。
  5. 邮票不允许 旋转 。
  6. 邮票必须完全在矩阵  。

如果在满足上述要求的前提下,可以放入邮票,请返回 true ,否则返回 false 。

 

示例 1:

输入:grid = [[1,0,0,0],[1,0,0,0],[1,0,0,0],[1,0,0,0],[1,0,0,0]], stampHeight = 4, stampWidth = 3
输出:true
解释:我们放入两个有重叠部分的邮票(图中标号为 1 和 2),它们能覆盖所有与空格子。

示例 2:

输入:grid = [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]], stampHeight = 2, stampWidth = 2 
输出:false 
解释:没办法放入邮票覆盖所有的空格子,且邮票不超出网格图以外。

 

提示:

  • m == grid.length
  • n == grid[r].length
  • 1 <= m, n <= 105
  • 1 <= m * n <= 2 * 105
  • grid[r][c] 要么是 0 ,要么是 1
  • 1 <= stampHeight, stampWidth <= 105

解法

方法一:二维前缀和 + 二维差分

根据题目描述,每一个空格子都必须被邮票覆盖,而且不能覆盖任何被占据的格子。因此,我们可以遍历二维矩阵,对于每个格子,如果以该格子为左上角的 $stampHeight \times stampWidth$ 的区域内的所有格子都是空格子(即没有被占据),那么我们就可以在该格子处放置一个邮票。

为了快速判断一个区域内的所有格子是否都是空格子,我们可以使用二维前缀和。我们用 $s_{i,j}$ 表示二维矩阵中从 $(1,1)$$(i,j)$ 的子矩阵中被占据的格子的数量。即 $s_{i, j} = s_{i - 1, j} + s_{i, j - 1} - s_{i - 1, j - 1} + grid_{i-1, j-1}$

那么以 $(i, j)$ 为左上角,且高度和宽度分别为 $stampHeight$$stampWidth$ 的子矩阵的右下角坐标为 $(x, y) = (i + stampHeight - 1, j + stampWidth - 1)$,我们可以通过 $s_{x, y} - s_{x, j - 1} - s_{i - 1, y} + s_{i - 1, j - 1}$ 来计算出该子矩阵中被占据的格子的数量。如果该子矩阵中被占据的格子的数量为 $0$,那么我们就可以在 $(i, j)$ 处放置一个邮票,放置邮票后,这 $stampHeight \times stampWidth$ 的区域内的所有格子都会变成被占据的格子,我们可以用二维差分数组 $d$ 来记录这一变化。即:

$$ \begin{aligned} d_{i, j} &\leftarrow d_{i, j} + 1 \\ d_{i, y + 1} &\leftarrow d_{i, y + 1} - 1 \\ d_{x + 1, j} &\leftarrow d_{x + 1, j} - 1 \\ d_{x + 1, y + 1} &\leftarrow d_{x + 1, y + 1} + 1 \end{aligned} $$

最后,我们对二维差分数组 $d$ 进行前缀和运算,可以得出每个格子被邮票覆盖的次数。如果某个格子没有被占据,且被邮票覆盖的次数为 $0$,那么我们就无法将邮票放置在该格子处,因此我们需要返回 $\texttt{false}$。如果所有“没被占据的格子”都成功被邮票覆盖,返回 $\texttt{true}$

时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$$n$ 分别是二维矩阵的高度和宽度。

Python3

class Solution:
    def possibleToStamp(
        self, grid: List[List[int]], stampHeight: int, stampWidth: int
    ) -> bool:
        m, n = len(grid), len(grid[0])
        s = [[0] * (n + 1) for _ in range(m + 1)]
        for i, row in enumerate(grid, 1):
            for j, v in enumerate(row, 1):
                s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + v
        d = [[0] * (n + 2) for _ in range(m + 2)]
        for i in range(1, m - stampHeight + 2):
            for j in range(1, n - stampWidth + 2):
                x, y = i + stampHeight - 1, j + stampWidth - 1
                if s[x][y] - s[x][j - 1] - s[i - 1][y] + s[i - 1][j - 1] == 0:
                    d[i][j] += 1
                    d[i][y + 1] -= 1
                    d[x + 1][j] -= 1
                    d[x + 1][y + 1] += 1
        for i, row in enumerate(grid, 1):
            for j, v in enumerate(row, 1):
                d[i][j] += d[i - 1][j] + d[i][j - 1] - d[i - 1][j - 1]
                if v == 0 and d[i][j] == 0:
                    return False
        return True

Java

class Solution {
    public boolean possibleToStamp(int[][] grid, int stampHeight, int stampWidth) {
        int m = grid.length, n = grid[0].length;
        int[][] s = new int[m + 1][n + 1];
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + grid[i - 1][j - 1];
            }
        }
        int[][] d = new int[m + 2][n + 2];
        for (int i = 1; i + stampHeight - 1 <= m; ++i) {
            for (int j = 1; j + stampWidth - 1 <= n; ++j) {
                int x = i + stampHeight - 1, y = j + stampWidth - 1;
                if (s[x][y] - s[x][j - 1] - s[i - 1][y] + s[i - 1][j - 1] == 0) {
                    d[i][j]++;
                    d[i][y + 1]--;
                    d[x + 1][j]--;
                    d[x + 1][y + 1]++;
                }
            }
        }
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                d[i][j] += d[i - 1][j] + d[i][j - 1] - d[i - 1][j - 1];
                if (grid[i - 1][j - 1] == 0 && d[i][j] == 0) {
                    return false;
                }
            }
        }
        return true;
    }
}

C++

class Solution {
public:
    bool possibleToStamp(vector<vector<int>>& grid, int stampHeight, int stampWidth) {
        int m = grid.size(), n = grid[0].size();
        vector<vector<int>> s(m + 1, vector<int>(n + 1));
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + grid[i - 1][j - 1];
            }
        }

        vector<vector<int>> d(m + 2, vector<int>(n + 2));
        for (int i = 1; i + stampHeight - 1 <= m; ++i) {
            for (int j = 1; j + stampWidth - 1 <= n; ++j) {
                int x = i + stampHeight - 1, y = j + stampWidth - 1;
                if (s[x][y] - s[x][j - 1] - s[i - 1][y] + s[i - 1][j - 1] == 0) {
                    d[i][j]++;
                    d[i][y + 1]--;
                    d[x + 1][j]--;
                    d[x + 1][y + 1]++;
                }
            }
        }

        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                d[i][j] += d[i - 1][j] + d[i][j - 1] - d[i - 1][j - 1];
                if (grid[i - 1][j - 1] == 0 && d[i][j] == 0) {
                    return false;
                }
            }
        }
        return true;
    }
};

Go

func possibleToStamp(grid [][]int, stampHeight int, stampWidth int) bool {
	m, n := len(grid), len(grid[0])
	s := make([][]int, m+1)
	for i := range s {
		s[i] = make([]int, n+1)
	}
	for i := 1; i <= m; i++ {
		for j := 1; j <= n; j++ {
			s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + grid[i-1][j-1]
		}
	}

	d := make([][]int, m+2)
	for i := range d {
		d[i] = make([]int, n+2)
	}

	for i := 1; i+stampHeight-1 <= m; i++ {
		for j := 1; j+stampWidth-1 <= n; j++ {
			x, y := i+stampHeight-1, j+stampWidth-1
			if s[x][y]-s[x][j-1]-s[i-1][y]+s[i-1][j-1] == 0 {
				d[i][j]++
				d[i][y+1]--
				d[x+1][j]--
				d[x+1][y+1]++
			}
		}
	}

	for i := 1; i <= m; i++ {
		for j := 1; j <= n; j++ {
			d[i][j] += d[i-1][j] + d[i][j-1] - d[i-1][j-1]
			if grid[i-1][j-1] == 0 && d[i][j] == 0 {
				return false
			}
		}
	}
	return true
}

TypeScript

function possibleToStamp(grid: number[][], stampHeight: number, stampWidth: number): boolean {
    const m = grid.length;
    const n = grid[0].length;
    const s: number[][] = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
    for (let i = 1; i <= m; ++i) {
        for (let j = 1; j <= n; ++j) {
            s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + grid[i - 1][j - 1];
        }
    }

    const d: number[][] = Array.from({ length: m + 2 }, () => Array(n + 2).fill(0));
    for (let i = 1; i + stampHeight - 1 <= m; ++i) {
        for (let j = 1; j + stampWidth - 1 <= n; ++j) {
            const [x, y] = [i + stampHeight - 1, j + stampWidth - 1];
            if (s[x][y] - s[x][j - 1] - s[i - 1][y] + s[i - 1][j - 1] === 0) {
                d[i][j]++;
                d[i][y + 1]--;
                d[x + 1][j]--;
                d[x + 1][y + 1]++;
            }
        }
    }

    for (let i = 1; i <= m; ++i) {
        for (let j = 1; j <= n; ++j) {
            d[i][j] += d[i - 1][j] + d[i][j - 1] - d[i - 1][j - 1];
            if (grid[i - 1][j - 1] === 0 && d[i][j] === 0) {
                return false;
            }
        }
    }
    return true;
}

Rust

impl Solution {
    pub fn possible_to_stamp(grid: Vec<Vec<i32>>, stamp_height: i32, stamp_width: i32) -> bool {
        let n: usize = grid.len();
        let m: usize = grid[0].len();

        let mut prefix_vec: Vec<Vec<i32>> = vec![vec![0; m + 1]; n + 1];

        // Initialize the prefix vector
        for i in 0..n {
            for j in 0..m {
                prefix_vec[i + 1][j + 1] =
                    prefix_vec[i][j + 1] + prefix_vec[i + 1][j] - prefix_vec[i][j] + grid[i][j];
            }
        }

        let mut diff_vec: Vec<Vec<i32>> = vec![vec![0; m + 1]; n + 1];

        // Construct the difference vector based on prefix sum vector
        for i in 0..n {
            for j in 0..m {
                // If the value of the cell is one, just bypass this
                if grid[i][j] == 1 {
                    continue;
                }
                // Otherwise, try stick the stamp
                let x: usize = i + (stamp_height as usize);
                let y: usize = j + (stamp_width as usize);
                // Check the bound
                if x <= n && y <= m {
                    // If the region can be sticked (All cells are empty, which means the sum will be zero)
                    if prefix_vec[x][y] - prefix_vec[x][j] - prefix_vec[i][y] + prefix_vec[i][j]
                        == 0
                    {
                        // Update the difference vector
                        diff_vec[i][j] += 1;
                        diff_vec[x][y] += 1;

                        diff_vec[x][j] -= 1;
                        diff_vec[i][y] -= 1;
                    }
                }
            }
        }

        let mut check_vec: Vec<Vec<i32>> = vec![vec![0; m + 1]; n + 1];

        // Check the prefix sum of difference vector, to determine if there is any empty cell left
        for i in 0..n {
            for j in 0..m {
                // If the value of the cell is one, just bypass this
                if grid[i][j] == 1 {
                    continue;
                }
                // Otherwise, check if the region is empty, by calculating the prefix sum of difference vector
                check_vec[i + 1][j + 1] =
                    check_vec[i][j + 1] + check_vec[i + 1][j] - check_vec[i][j] + diff_vec[i][j];
                if check_vec[i + 1][j + 1] == 0 {
                    return false;
                }
            }
        }

        true
    }
}

JavaScript

/**
 * @param {number[][]} grid
 * @param {number} stampHeight
 * @param {number} stampWidth
 * @return {boolean}
 */
var possibleToStamp = function (grid, stampHeight, stampWidth) {
    const m = grid.length;
    const n = grid[0].length;
    const s = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
    for (let i = 1; i <= m; ++i) {
        for (let j = 1; j <= n; ++j) {
            s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + grid[i - 1][j - 1];
        }
    }

    const d = Array.from({ length: m + 2 }, () => Array(n + 2).fill(0));
    for (let i = 1; i + stampHeight - 1 <= m; ++i) {
        for (let j = 1; j + stampWidth - 1 <= n; ++j) {
            const [x, y] = [i + stampHeight - 1, j + stampWidth - 1];
            if (s[x][y] - s[x][j - 1] - s[i - 1][y] + s[i - 1][j - 1] === 0) {
                d[i][j]++;
                d[i][y + 1]--;
                d[x + 1][j]--;
                d[x + 1][y + 1]++;
            }
        }
    }

    for (let i = 1; i <= m; ++i) {
        for (let j = 1; j <= n; ++j) {
            d[i][j] += d[i - 1][j] + d[i][j - 1] - d[i - 1][j - 1];
            if (grid[i - 1][j - 1] === 0 && d[i][j] === 0) {
                return false;
            }
        }
    }
    return true;
};

Kotlin

class Solution {
    fun possibleToStamp(grid: Array<IntArray>, stampHeight: Int, stampWidth: Int): Boolean {
        val m = grid.size
        val n = grid[0].size

        var prefix_sums_matrix = Array(m + 1) { IntArray(n + 1) }
        var diff_matrix = Array(m + 1) { IntArray(n + 1) }
        var sum_matrix = Array(m + 1) { IntArray(n + 1) }

        for (i in 0..<m) {
            for (j in 0..<n) {
                prefix_sums_matrix[i + 1][j + 1] =
                    prefix_sums_matrix[i + 1][j] +
                    prefix_sums_matrix[i][j + 1] -
                    prefix_sums_matrix[i][j] +
                    grid[i][j]
            }
        }

        for (i in 0..<m) {
            for (j in 0..<n) {
                if (grid[i][j] != 0) {
                    continue
                }

                val bottom = i + stampHeight
                val right = j + stampWidth

                if (bottom > m || right > n) {
                    continue
                }

                val sum = prefix_sums_matrix[bottom][right] -
                    prefix_sums_matrix[bottom][j] -
                    prefix_sums_matrix[i][right] +
                    prefix_sums_matrix[i][j]

                if (sum == 0) {
                    diff_matrix[i][j] += 1
                    diff_matrix[bottom][right] += 1

                    diff_matrix[i][right] -= 1
                    diff_matrix[bottom][j] -= 1
                }
            }
        }

        for (i in 0..<m) {
            for (j in 0..<n) {
                if (grid[i][j] != 0) {
                    continue
                }

                val sum = sum_matrix[i][j + 1] +
                    sum_matrix[i + 1][j] -
                    sum_matrix[i][j] +
                    diff_matrix[i][j]

                if (sum == 0) {
                    return false
                }

                sum_matrix[i + 1][j + 1] = sum
            }
        }

        return true
    }
}