-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathanswer_97.py
218 lines (159 loc) · 5.49 KB
/
answer_97.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import cv2
import numpy as np
np.random.seed(0)
# get HOG
def HOG(img):
# Grayscale
def BGR2GRAY(img):
gray = 0.2126 * img[..., 2] + 0.7152 * img[..., 1] + 0.0722 * img[..., 0]
return gray
# Magnitude and gradient
def get_gradXY(gray):
H, W = gray.shape
# padding before grad
gray = np.pad(gray, (1, 1), 'edge')
# get grad x
gx = gray[1:H+1, 2:] - gray[1:H+1, :W]
# get grad y
gy = gray[2:, 1:W+1] - gray[:H, 1:W+1]
# replace 0 with
gx[gx == 0] = 1e-6
return gx, gy
# get magnitude and gradient
def get_MagGrad(gx, gy):
# get gradient maginitude
magnitude = np.sqrt(gx ** 2 + gy ** 2)
# get gradient angle
gradient = np.arctan(gy / gx)
gradient[gradient < 0] = np.pi / 2 + gradient[gradient < 0] + np.pi / 2
return magnitude, gradient
# Gradient histogram
def quantization(gradient):
# prepare quantization table
gradient_quantized = np.zeros_like(gradient, dtype=np.int)
# quantization base
d = np.pi / 9
# quantization
for i in range(9):
gradient_quantized[np.where((gradient >= d * i) & (gradient <= d * (i + 1)))] = i
return gradient_quantized
# get gradient histogram
def gradient_histogram(gradient_quantized, magnitude, N=8):
# get shape
H, W = magnitude.shape
# get cell num
cell_N_H = H // N
cell_N_W = W // N
histogram = np.zeros((cell_N_H, cell_N_W, 9), dtype=np.float32)
# each pixel
for y in range(cell_N_H):
for x in range(cell_N_W):
for j in range(N):
for i in range(N):
histogram[y, x, gradient_quantized[y * 4 + j, x * 4 + i]] += magnitude[y * 4 + j, x * 4 + i]
return histogram
# histogram normalization
def normalization(histogram, C=3, epsilon=1):
cell_N_H, cell_N_W, _ = histogram.shape
## each histogram
for y in range(cell_N_H):
for x in range(cell_N_W):
#for i in range(9):
histogram[y, x] /= np.sqrt(np.sum(histogram[max(y - 1, 0) : min(y + 2, cell_N_H),
max(x - 1, 0) : min(x + 2, cell_N_W)] ** 2) + epsilon)
return histogram
# 1. BGR -> Gray
gray = BGR2GRAY(img)
# 1. Gray -> Gradient x and y
gx, gy = get_gradXY(gray)
# 2. get gradient magnitude and angle
magnitude, gradient = get_MagGrad(gx, gy)
# 3. Quantization
gradient_quantized = quantization(gradient)
# 4. Gradient histogram
histogram = gradient_histogram(gradient_quantized, magnitude)
# 5. Histogram normalization
histogram = normalization(histogram)
return histogram
# get IoU overlap ratio
def iou(a, b):
# get area of a
area_a = (a[2] - a[0]) * (a[3] - a[1])
# get area of b
area_b = (b[2] - b[0]) * (b[3] - b[1])
# get left top x of IoU
iou_x1 = np.maximum(a[0], b[0])
# get left top y of IoU
iou_y1 = np.maximum(a[1], b[1])
# get right bottom of IoU
iou_x2 = np.minimum(a[2], b[2])
# get right bottom of IoU
iou_y2 = np.minimum(a[3], b[3])
# get width of IoU
iou_w = iou_x2 - iou_x1
# get height of IoU
iou_h = iou_y2 - iou_y1
# get area of IoU
area_iou = iou_w * iou_h
# get overlap ratio between IoU and all area
iou = area_iou / (area_a + area_b - area_iou)
return iou
# resize using bi-linear
def resize(img, h, w):
# get shape
_h, _w, _c = img.shape
# get resize ratio
ah = 1. * h / _h
aw = 1. * w / _w
# get index of each y
y = np.arange(h).repeat(w).reshape(w, -1)
# get index of each x
x = np.tile(np.arange(w), (h, 1))
# get coordinate toward x and y of resized image
y = (y / ah)
x = (x / aw)
# transfer to int
ix = np.floor(x).astype(np.int32)
iy = np.floor(y).astype(np.int32)
# clip index
ix = np.minimum(ix, _w-2)
iy = np.minimum(iy, _h-2)
# get distance between original image index and resized image index
dx = x - ix
dy = y - iy
dx = np.tile(dx, [_c, 1, 1]).transpose(1, 2, 0)
dy = np.tile(dy, [_c, 1, 1]).transpose(1, 2, 0)
# resize
out = (1 - dx) * (1 - dy) * img[iy, ix] + dx * (1 - dy) * img[iy, ix + 1] + (1 - dx) * dy * img[iy + 1, ix] + dx * dy * img[iy + 1, ix + 1]
out[out > 255] = 255
return out
# sliding window
def sliding_window(img, H_size=32):
# get shape
H, W, _ = img.shape
# base rectangle [h, w]
recs = np.array(((42, 42), (56, 56), (70, 70)), dtype=np.float32)
# sliding window
for y in range(0, H, 4):
for x in range(0, W, 4):
for rec in recs:
# get half size of ractangle
dh = int(rec[0] // 2)
dw = int(rec[1] // 2)
# get left top x
x1 = max(x - dw, 0)
# get left top y
x2 = min(x + dw, W)
# get right bottom x
y1 = max(y - dh, 0)
# get right bottom y
y2 = min(y + dh, H)
# crop region
region = img[max(y - dh, 0) : min(y + dh, H), max(x - dw, 0) : min(x + dw, W)]
# resize crop region
region = resize(region, H_size, H_size)
# get HOG feature
region_hog = HOG(region).ravel()
# read detect target image
img = cv2.imread("imori_many.jpg")
sliding_window(img)