forked from microsoft/gated-graph-neural-network-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_data.py
94 lines (79 loc) · 3.31 KB
/
get_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
from rdkit import Chem
import glob
import json
import numpy as np
if not os.path.exists('data'):
os.mkdir('data')
print('made directory ./data/')
download_path = os.path.join('data', 'dsgdb9nsd.xyz.tar.bz2')
if not os.path.exists(download_path):
print('downloading data to %s ...' % download_path)
source = 'https://ndownloader.figshare.com/files/3195389'
os.system('wget -O %s %s' % (download_path, source))
print('finished downloading')
unzip_path = os.path.join('data', 'qm9_raw')
if not os.path.exists(unzip_path):
print('extracting data to %s ...' % unzip_path)
os.mkdir(unzip_path)
os.system('tar xvjf %s -C %s' % (download_path, unzip_path))
print('finished extracting')
def preprocess():
index_of_mu = 4
def read_xyz(file_path):
with open(file_path, 'r') as f:
lines = f.readlines()
smiles = lines[-2].split('\t')[0]
properties = lines[1].split('\t')
mu = float(properties[index_of_mu])
return {'smiles': smiles, 'mu': mu}
print('loading train/validation split')
with open('valid_idx.json', 'r') as f:
valid_idx = json.load(f)['valid_idxs']
valid_files = [os.path.join(unzip_path, 'dsgdb9nsd_%s.xyz' % i) for i in valid_idx]
print('reading data...')
raw_data = {'train': [], 'valid': []}
all_files = glob.glob(os.path.join(unzip_path, '*.xyz'))
for file_idx, file_path in enumerate(all_files):
if file_idx % 100 == 0:
print('%.1f %% \r' % (file_idx / float(len(all_files)) * 100), end=""),
if file_path not in valid_files:
raw_data['train'].append(read_xyz(file_path))
else:
raw_data['valid'].append(read_xyz(file_path))
all_mu = [mol['mu'] for mol in raw_data['train']]
mean_mu = np.mean(all_mu)
std_mu = np.std(all_mu)
def normalize_mu(mu):
return (mu - mean_mu) / std_mu
def onehot(idx, len):
z = [0 for _ in range(len)]
z[idx] = 1
return z
bond_dict = {'SINGLE': 1, 'DOUBLE': 2, 'TRIPLE': 3, "AROMATIC": 4}
def to_graph(smiles):
mol = Chem.MolFromSmiles(smiles)
mol = Chem.AddHs(mol)
edges = []
nodes = []
for bond in mol.GetBonds():
edges.append((bond.GetBeginAtomIdx(), bond_dict[str(bond.GetBondType())], bond.GetEndAtomIdx()))
for atom in mol.GetAtoms():
nodes.append(onehot(["H", "C", "N", "O", "F"].index(atom.GetSymbol()), 5))
return nodes, edges
print('parsing smiles as graphs...')
processed_data = {'train': [], 'valid': []}
for section in ['train', 'valid']:
for i,(smiles, mu) in enumerate([(mol['smiles'], mol['mu']) for mol in raw_data[section]]):
if i % 100 == 0:
print('%s: %.1f %% \r' % (section, 100*i/float(len(raw_data[section]))), end="")
nodes, edges = to_graph(smiles)
processed_data[section].append({
'targets': [[normalize_mu(mu)]],
'graph': edges,
'node_features': nodes
})
print('%s: 100 %% ' % (section))
with open('molecules_%s.json' % section, 'w') as f:
json.dump(processed_data[section], f)
preprocess()