Skip to content

Commit

Permalink
Update channel.md
Browse files Browse the repository at this point in the history
  • Loading branch information
rzy0901 committed Oct 17, 2023
1 parent 4293922 commit 29a4bab
Showing 1 changed file with 73 additions and 16 deletions.
89 changes: 73 additions & 16 deletions content/post/channel.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ categories: ["Math"]

contentCopyright: MIT
mathjax: true
mathjaxEnableAutoNumber: true
autoCollapseToc: true
postMetaInFooter: true
reward: false
Expand All @@ -29,12 +30,15 @@ typora-root-url: ../../static

+ Discrete Fourier Transform (DFT), Inverse Discrete Fourier Transform (IDFT) formula:
$$
\begin{equation}
\begin{cases}
X[k]=\sum_{n=0}^{N-1}x[n]\exp\left(-\frac{\mathrm{j}2\pi kn}{N}\right)\\=\sum_{n=-\infty}^{\infty}x[n]\exp(-\mathrm j \omega n)|_{\omega=2\pi k/N}=X(e^{\mathrm j\omega})|_{\omega=2\pi k/N}\\
x[n]=\frac{1}{N}\sum_{k=0}^{N-1}X[k]\exp\left(\frac{\mathrm j 2\pi kn}{N}\right)
\end{cases}.
\label{eq:DFT}
\end{equation}
$$

+ Simple proof (Considering CIR/CFR at one time slot $t$):

> Note that $f_n=n\Delta f$, $\tau_n=n\Delta t$, $\Delta f\Delta t=1/N$. (Take a look at above DFT equations or time/frequency settings in [MATLAB Fast Fourier Transform (fft) documentation](https://www.mathworks.com/help/matlab/ref/fft.html) example codes. )
Expand All @@ -44,7 +48,7 @@ typora-root-url: ../../static
h(t,\tau)=\sum_{n=0}^{N(t)-1}\alpha_n(t)\delta(\tau-\tau_n(t))\rightarrow \mathbf{h}=[\alpha_0(t),\ldots,\alpha_{N-1}(t)].
$$

Do DFT at $k$:
Do DFT at $k$ using $\eqref{eq:DFT}$:
$$
H(t,k)=\sum_{n=0}^{N(t)-1}\alpha_n(t)\exp(-\frac{\mathrm{j2\pi kn}}{N}).
$$
Expand All @@ -71,51 +75,104 @@ typora-root-url: ../../static

+ **Real** bandpass signal:
$$
\begin{align}
s(t)=s_\text{I}(t)\cos(2\pi f_\text{c} t) -s_\text{Q}(2\pi f_\text{c} t).
\end{align}
$$

+ $s_\text{I}(t)$: lowpass in phase component.
+ $s_\text{Q}(t)$: lowpass quadrature component.

> Many involved signals in wireless communication are always bandpass signal with carrier frequency $f_\text{c}$ and bandwidth $2B$, with $2B \ll f_\text{c}$.
+ Equivalent **complex** baseband (lowpass) signal (real bandpass $\rightarrow$ complex baseband):
$$
\begin{align}
u(t)=s_\text{I}(t)+\mathrm{j}s_\text{Q}(t).
\end{align}
$$

+ Complex baseband $\rightarrow$ real bandpass:
$$
\begin{aligned}
\text{Real bandpass signal} &= \text{Re}\{\text{Complex baseband signal}\times\exp(\mathrm j2\pi f_\text{c}t)\},\\
\begin{align}
\text{Real bandpass signal} &= \text{Re}\{\text{Complex baseband signal}\times\exp(\mathrm j2\pi f_\text{c}t)\}, \nonumber \\
s(t) &= \text{Re}\{u(t)\times\exp(\mathrm j2\pi f_\text{c}t)\}.
\end{aligned}
\label{eq:complex2real}
\end{align}
$$

## Two types of CIR: Real Bandpass Channel, Equivalent Complex Baseband (Lowpass) Channel

## Channel impulse response

+ Real bandpass channel:
$$
h(t,\tau)=\sum_{n=0}^{N(t)-1}\alpha_{n}(t)\delta(\tau-\tau_n(t)),
\begin{align}
h_\text{real}(t,\tau)=\sum_{n=0}^{N(t)-1}\alpha_{n}(t)\delta(\tau-\tau_n(t)),
\label{eq:ch_real}
\end{align}
$$
where:

+ $t$ and $\tau$: time domain and delay domain.

+ $N(t)$: number of multipaths at time slot $t$.
+ $\alpha_n(t)$ and $\tau_n(t)$: path loss (amplitude) and delay for $n$-th path at time slot $t$.

+ Equivalent complex baseband (lowpass) channel:
$$
h(t,\tau)=\sum_{n=0}^{N(t)-1}\alpha_n(t)\exp(-\mathrm{j}\phi_n(t))\delta(\tau-\tau_n(t)),
\begin{align}
h_\text{complex}(t,\tau)=\sum_{n=0}^{N(t)-1}\alpha_n(t)\exp(-\mathrm{j}\phi_n(t))\delta(\tau-\tau_n(t)),
\label{eq:ch_complex}
\end{align}
$$

where $\phi_n(t)=2\pi f_\text{c} \tau_n(t)+\phi_{\text{D}_n}(t)$ denotes the phase of $n$-th path at time slot $t$, with $\phi_{\text{D}_n}(t)$ denotes the Doppler phase shift.

> + Doppler phase shift $\phi_{\text{D}_n}(t)$ is a function of Doppler frequency $f_{\text{D}_n}(t)$: $\phi_{\text{D}_n}(t)=\int_t 2\pi f_{\text{D}_n}(t) \mathrm d t$.
>
> + Doppler frequency shift $f_{\text{D}_n}(t)=v\cos(\theta(t))/\lambda$ with motion velocity $v$, angel of arrival relative to the direction of motion $\theta(t)$ and signal wavelength $\lambda$.
# Wideband / Narrowband Channel Models
## Received signal

+ Transmitted signal (See [definition](#definition)):

+ Real: $s(t)=s_\text{I}(t)\cos(2\pi f_\text{c}t)-s_\text{Q}(t)\cos(2\pi f_\text{c}t)$.

+ Complex baseband: $u(t)=s_\text{I}(t)+\mathrm{j}s_\text{Q}(t)$.

+ Received signal:

+ Real:
$$
\begin{align}
r(t) &= s(t) \otimes h(t,\tau) \nonumber \\
&= s(t) \otimes \sum_{n=0}^{N(t)-1}\alpha_{n}(t)\delta(\tau-\tau_n(t)) \nonumber \\
&=\sum_{n=0}^{N(t)-1}\alpha_{n}(t)s(\tau-\tau_n(t)).
\end{align}
$$

+ Complex baseband:
$$
\begin{align}
u_r(t) &= u(t) \otimes h_\text{complex}(t,\tau)\nonumber \\
&=u(t) \otimes \sum_{n=0}^{N(t)-1}\alpha_n(t)\exp(-\mathrm{j}\phi_n(t))\delta(\tau-\tau_n(t)) \nonumber \\
&=\sum_{n=0}^{N(t)-1}\alpha_n(t)\exp(-\mathrm{j}\phi_n(t))u(\tau-\tau_n(t)).
\end{align}
$$

Here, $\otimes$ denotes the convolution operation.

+ Relationship (using $\eqref{eq:complex2real}$):
$$
r(t)=\text{Re}\left\{u(t)\exp(-\mathrm{j}2\pi f_\text{c}t)\right\}.
$$

# Wideband / Narrowband Channel Model

~~To be updated (DDL: before 2023.10.18)...~~





To be updated (DDL: before 2023.10.13)...

0 comments on commit 29a4bab

Please sign in to comment.