Skip to content

Commit

Permalink
Update channel.md
Browse files Browse the repository at this point in the history
  • Loading branch information
rzy0901 committed Oct 9, 2023
1 parent 047ea9d commit 8d7fcba
Showing 1 changed file with 62 additions and 11 deletions.
73 changes: 62 additions & 11 deletions content/post/channel.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,15 +7,15 @@ categories: ["Math"]

contentCopyright: MIT
mathjax: true
autoCollapseToc: false
autoCollapseToc: true
postMetaInFooter: true
reward: false
author: Ren Zhenyu
typora-copy-images-to: ../../static/channel.assets
typora-root-url: ../../static
---

>**DISCLAIMER:** This note is for reference only. I am not 100% sure of the accuracy of my note. If you find any errors/typos, feel free to contact me.
>**DISCLAIMER:** This note is for reference only. I am not 100% sure of the accuracy of my note. If you find any mistakes/typos, feel free to contact me.
>
>This note records some interesting issues that I met in wireless channel modeling :smile:.
Expand All @@ -32,7 +32,7 @@ typora-root-url: ../../static
\begin{cases}
X[k]=\sum_{n=0}^{N-1}x[n]\exp\left(-\frac{\mathrm{j}2\pi kn}{N}\right)\\=\sum_{n=-\infty}^{\infty}x[n]\exp(-\mathrm j \omega n)|_{\omega=2\pi k/N}=X(e^{\mathrm j\omega})|_{\omega=2\pi k/N}\\
x[n]=\frac{1}{N}\sum_{k=0}^{N-1}X[k]\exp\left(\frac{\mathrm j 2\pi kn}{N}\right)
\end{cases}
\end{cases}.
$$

+ Simple proof (Considering CIR/CFR at one time slot $t$):
Expand All @@ -41,19 +41,19 @@ typora-root-url: ../../static
We have CIR in below form:
$$
h(\tau)=\sum_{i=0}^{N-1}\alpha_0\delta(\tau-\tau_i)\rightarrow \mathbf{h}=[\alpha_0,\ldots,\alpha_{N-1}],
h(\tau)=\sum_{i=0}^{N-1}\alpha_0\delta(\tau-\tau_i)\rightarrow \mathbf{h}=[\alpha_0,\ldots,\alpha_{N-1}].
$$

Do DFT at $k$:
$$
H(k)=\sum_{n=0}^{N-1}\alpha_n\exp(-\frac{\mathrm{j2\pi kn}}{N})
H(k)=\sum_{n=0}^{N-1}\alpha_n\exp(-\frac{\mathrm{j2\pi kn}}{N}).
$$
Substitute $k$ with $f$ at the left of, and substitute $k$ with $f/\Delta f$ at the right side of the equation, we have:

Substitute $k$ with $f$ at the left of the equation, and substitute $k$ with $f/\Delta f$ at the right side of the equation, we have:
$$
\begin{aligned}
H(f)&=\sum_{n=0}^{N-1}\alpha_n\exp(-\frac{\mathrm{j2\pi f/\Delta f n}}{N}) \\
&\xlongequal[]{\Delta f =1/(N\Delta t)}\sum_{n=0}^{N-1}\alpha_n\exp(-\mathrm{j2\pi f\tau_n})
H(f)&=\sum_{n=0}^{N-1}\alpha_n\exp(-\frac{\mathrm{j2\pi f/\Delta f n}}{N}), \\
&\xlongequal[]{\Delta f =1/(N\Delta t)}\sum_{n=0}^{N-1}\alpha_n\exp(-\mathrm{j2\pi f\tau_n}).
\end{aligned}
$$

Expand All @@ -65,6 +65,57 @@ typora-root-url: ../../static

+ 一个靠谱的知乎问题:[在通信专业里的时域,频域,空域,角域到底都有怎样的联系呢?](https://www.zhihu.com/question/315208907/answer/2742955196)

# Wideband/Narrowband Channel Models
# Real Bandpass Signals, Equivalent Complex Baseband (Lowpass) Signals Conversion

## Definition

+ **Real** bandpass signal:
$$
s(t)=s_\text{I}(t)\cos(2\pi f_\text{c} t) -s_\text{Q}(2\pi f_\text{c} t).
$$

+ $s_\text{I}(t)$: lowpass in phase component.
+ $s_\text{Q}(t)$: lowpass quadrature component.

> Many involved signals in wireless communication are always bandpass signal with carrier frequency $f_\text{c}$ and bandwidth $2B$, with $2B \ll f_\text{c}$.
+ Equivalent **complex** baseband (lowpass) signal (real bandpass $\rightarrow$ complex baseband):
$$
u(t)=s_\text{I}(t)+\mathrm{j}s_\text{Q}(t).
$$

+ Complex baseband $\rightarrow$ real bandpass:
$$
\begin{aligned}
\text{Real bandpass signal} &= \text{Re}\{\text{Complex baseband signal}\times\exp(\mathrm j2\pi f_\text{c}t)\},\\
s(t) &= \text{Re}\{u(t)\times\exp(\mathrm j2\pi f_\text{c}t)\}.
\end{aligned}
$$

## Two types of CIR: Real Bandpass Channel, Equivalent Complex Baseband (Lowpass) Channel

+ Real bandpass channel:
$$
h(t,\tau)=\sum_{n=0}^{N-1}\alpha_{n}(t)\delta(\tau-\tau_n(t)),
$$
where:

+ $t$ and $\tau$: time domain and delay domain.

+ $N$: number of multipaths.
+ $\alpha_n(t)$ and $\tau_n(t)$: path loss (amplitude) and delay for $n$-th path at time slot $t$.

+ Equivalent complex baseband (lowpass) channel:
$$
h(t,\tau)=\sum_{n=0}^{N-1}\alpha_n(t)\exp(-\mathrm{j}\phi_n(t))\delta(\tau-\tau_n(t)),
$$

where $\phi_n(t)=2\pi f_\text{c} \tau_n(t)+\phi_{\text{D}_n}(t)$ denotes the phase of $n$-th path at time slot $t$, with $\phi_{\text{D}_n}(t)$ denotes the Doppler phase shif t.

> + Doppler phase shift $\phi_{\text{D}_n}(t)$ is a function of Doppler frequency $f_{\text{D}_n}(t)$: $\phi_{\text{D}_n}(t)=\int_t 2\pi f_{\text{D}_n}(t) \mathrm d t$.
>
> + Doppler frequency shift $f_{\text{D}_n}(t)=v\cos(\theta(t))/\lambda$ with motion velocity $v$, angel of arrival relative to the direction of motion $\theta(t)$ and signal wavelength $\lambda$.
# Wideband / Narrowband Channel Models

To be updated tomorrow (2023.10.8)...
To be updated (DDL: before 2023.10.13)...

0 comments on commit 8d7fcba

Please sign in to comment.